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ABSTRACT 

BANG, YOUNGSUK. Hybrid Reduced Order Modeling Algorithms for Reactor Physics 

Calculations. (Under the direction of Hany S. Abdel-Khalik). 

 

Reduced order modeling (ROM) has been recognized as an indispensable approach when 

the engineering analysis requires many executions of high fidelity simulation codes. 

Examples of such engineering analyses in nuclear reactor core calculations, representing the 

focus of this dissertation, include the functionalization of the homogenized few-group cross-

sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, 

etc. This is done via assembly calculations which are executed many times to generate the 

required functionalization for use in the downstream core calculations. Other examples are 

sensitivity analysis used to determine important core attribute variations due to input 

parameter variations, and uncertainty quantification employed to estimate core attribute 

uncertainties originating from input parameter uncertainties.  

ROM constructs a surrogate model with quantifiable accuracy which can replace the 

original code for subsequent engineering analysis calculations. This is achieved by reducing 

the effective dimensionality of the input parameter, the state variable, or the output response 

spaces, by projection onto the so-called active subspaces. Confining the variations to the 

active subspace allows one to construct an ROM model of reduced complexity which can be 

solved more efficiently. This dissertation introduces a new algorithm to render reduction with 

the reduction errors bounded based on a user-defined error tolerance which represents the 

main challenge of existing ROM techniques. Bounding the error is the key to ensuring that 

the constructed ROM models are robust for all possible applications. Providing such error 



www.manaraa.com

bounds represents one of the algorithmic contributions of this dissertation to the ROM state-

of-the-art. 

Recognizing that ROM techniques have been developed to render reduction at different 

levels, e.g. the input parameter space, the state space, and the response space, this dissertation 

offers a set of novel hybrid ROM algorithms which can be readily integrated into existing 

methods and offer higher computational efficiency and defendable accuracy of the reduced 

models. For example, the snapshots ROM algorithm is hybridized with the range finding 

algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In 

another implementation, the perturbation theory used to calculate first order derivatives of 

responses with respect to parameters is hybridized with a forward sensitivity analysis 

approach to render reduction in the parameter space. Reduction at the state and parameter 

spaces can be combined to render further reduction at the interface between different physics 

codes in a multi-physics model with the accuracy quantified in a similar manner to the single 

physics case.  

Although the proposed algorithms are generic in nature, we focus here on radiation 

transport models used in support of the design and analysis of nuclear reactor cores. In 

particular, we focus on replacing the traditional assembly calculations by ROM models to 

facilitate the generation of homogenized cross-sections for downstream core calculations. 

The implication is that assembly calculations could be done instantaneously therefore 

precluding the need for the expensive evaluation of the few-group cross-sections for all 

possible core conditions. Given the generic natures of the algorithms, we make an effort to 

introduce the material in a general form to allow non-nuclear engineers to benefit from this 

work.  
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1 

 

CHAPTER 1. INTRODUCTION 

 

Predictive science which refers to the application of computational models to the study 

and the prediction of physical or engineering systems has emerged as a powerful and an 

indispensable tool for resolving scientific and engineering problems. As the physical 

understanding and scientific theories are deepened, more details are added to the models in 

order to provide more accurate predictions. Nevertheless, the computational cost in terms of 

storage requirements and execution time also increases due to the increased modeling details, 

i.e., higher dimensional models. Therefore, the added benefit of high-fidelity prediction may 

not be fully realized due to the overwhelming computational requirements. In routine 

engineering calculations where the turnaround time for simulation must be fast, high 

premium is placed on the computational efficiency. Interestingly, the fidelity is sometimes 

sacrificed in order to improve the efficiency of the calculations, especially when many 

executions of the models are required to complete certain engineering-oriented studies such 

as design optimization, sensitivity analysis, and uncertainty quantification.  

Reactor physics, the main focus of this dissertation, is the key element of the reactor core 

analysis wherein the radiation transport and interactions with the reactor materials, e.g., fuel, 

coolant, and structural materials, are modeled via the Boltzmann equation. Given the huge 

level of heterogeneity deliberately introduced in the design for safety and economic reasons; 

and the complexity of cross-sections characterizing the interaction probabilities with reactor 
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materials, one must rely on numerical methods and homogenization techniques to render 

predictions of reactor behavior in practical computational times. Numerical methods are 

needed since analytical solutions are available only for few over-simplified cases, e.g. a bare 

homogeneous slab reactor. Homogenization techniques are essential to reduce the effective 

model’s dimensionality. More details on typical dimensions are given later in the text. For 

the moment, it suffices to say that there currently exists no detailed simulation of the entire 

reactor core with all the geometry details resolved and the various physics coupling 

incorporated that can be used on a routine basis for engineering design, analysis, and 

regulatory purposes. 

Homogenization techniques achieve dimensionality reduction by dividing the 

computational phase space (energy, angle, space, and time) into numerous sub-regions over 

which separate fast calculations can be performed. Physical insight is then used to connect 

the solutions obtained from the various sub-regions. Specifically, reactor physics calculations 

are split over three stages, pin cell calculations used to get a detailed description over energy 

with many energy groups but limited to a single fuel pin; assembly calculations expand the 

spatial domain to a 2-dimensional slice of a fuel assembly, called lattice, and compress the 

energy details to a few-group cross-section representation; and finally core calculations for 

the analysis of the whole core but now with all the energy and spatial details homogenized 

over the various fuel lattices. 

Another modeling complication results from the interaction between the different physics 

affecting reactor behavior via the so-called feedback terms. For example, both thermal 
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hydraulics analysis and material transmutation feedback effects must be taken into account. 

This follows as cross-sections are known to depend on both the temperature of the fuel and 

the various material isotopic densities which continuously vary over time due to irradiation-

induced transmutations.  

Despite these complexities, the prediction accuracy of reactor calculations have been 

continuously improving over the years mainly because of the expertise gleaned over the 

many years of operation. This resulted in fine-tuning and customizing the models to the 

specific reactor and fuel loading. As the reactors age however, the predictive accuracy of the 

models is expected to degrade. To address this, the US nuclear community has emphasized 

the need to use the recent advances in computer power to improve the fidelity of existing 

reactor methods. There are currently several projects around the country which support this 

initiative by building new software tools that incorporate more modeling details and make 

less simplifying assumptions in order to improve the fidelity of the models. While laudable, 

we believe without a capability to render these simulations in practical times similar to these 

currently employed by the industry, it is unlikely that the benefits of these new developments 

will be realized in practice. 

At a first glance, the use of powerful computer to better model reactors appears to be a 

logical step forward. Under the surface however this initiative implies a marked depart from 

current design philosophy which primarily relies on experimental validation for design, 

operation, and regulation decision making. In the new initiative, the simulation assumes a 

leading role in the above processes. For this to be credible, the errors in the simulation must 
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be rigorously quantified, understood, and ultimately reduced. This has solicited the need for 

uncertainty quantification, sensitivity analysis, and data assimilation techniques to achieve 

these goals. Performing these analyses with existing commercial codes is considered 

computationally intractable. The situation is expected to worsen with the new software 

development efforts expected to be much more complex and requiring longer execution 

times.  

Difficulties from prohibitive computational requirements have been a well-known 

problem to many other engineering fields (e.g. fluid dynamics, structural mechanics, 

geophysics, etc.) and have been studied extensively. Two approaches can be considered; 

surrogate model and reduced order model
1
. The surrogate model (also called the meta-

model, the data-based model, the information-driven model or the approximate model) is a 

low cost but fairly accurate alternative of the original model. The surrogate-based approach 

has been already proposed and applied by many researchers in several scientific areas to 

reduce the computational cost in the forward mode simulations for uncertainty quantification 

and design optimization. The reduced order modeling (also called model order reduction) 

generates a lower-dimensional model to approximate the original often high dimensional 

                                                 
1
 Different classifications have appeared in the literature [Eldred, et al. (2004), Liem (2007)], 

we however distinguish between reduced order modeling and surrogate model constructions 

are two different techniques. In our definition, reduced order modeling refers to a model that 

retains the original physics of the model but now expressed in terms of fewer degrees of 

freedom. Surrogate modeling however replaces the original model by another model picked 

to approximate the physics behavior but with no real relation to the physical process being 

modeled. For example, least-squares polynomial fitting represents an example of a surrogate 

modeling technique. Nodal methods however represent an example of reduced order 

modeling techniques. 
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model. The reduction is possible via mathematical transformation between the original 

dimensions and fewer dimensions, referred to hereinafter as the active degrees of freedom. If 

the transformation is linear, it can be described by linear algebra projection operation onto an 

active subspace, considered to contain all active degrees of freedom. Due to the reduction in 

dimensionality, the system of equations can be solved with reduced computational cost, e.g. 

smaller number of arithmetic operations or memory/storage requirements.  

These surrogate modeling techniques and reduced order modeling techniques have been 

successfully used in many scientific fields but rarely used in reactor physics problems mainly 

due to their limitations. For example, the surrogate modeling techniques have been only 

applied to the problems with small number of parameters (i.e. less than 20). The reason is 

that the unknown coefficients of a surrogate model increases super-linearly; thus, the 

computational cost, i.e. the number of code executions to generate the training sample sets 

would become rapidly impractical, which is often referred to as the curse of dimensionality. 

For reduced order modeling techniques, the source code should be accessible for 

modification needed to implement the reduction algorithm, which could be difficult for 

complicated or legacy codes. Moreover, the unique features of the current reactor physics 

calculation procedures should be addressed to reliably extract the active degrees of freedom 

with a given computational budget and accuracy requirements in addition to implementation 

concerns (e.g. parallelism). 

Sensitivity analysis, used widely in reactor physics community can be considered as a 

surrogate modeling technique, whereas response variations are approximated by a Taylor 
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series expansion retaining as many terms as the derivatives afforded by sensitivity analysis. 

In most cases only first order derivatives can be afforded resulting in a linear surrogate 

model. In typical reactor core design, the variations of the input parameters are expected to 

give rise to nonlinear behavior; thus the first order sensitivity analysis results would not 

credibly estimate the output response variations. Though the theory and the algorithms for 

higher order sensitivity analysis have been well-established, their implementation has been 

recognized as impractical because the higher order derivatives are difficult to compute and 

again the computational cost increases super-linearly depending on the number of inputs.  

We can also consider that the conventional reactor calculation procedure, i.e. two-step 

approach with homogenization and group collapsing for pin-cell, assembly and full core 

calculations (discussed in Chapter 2), as a physical-based hierarchical reduced order 

modeling. Note that by introducing the approximating and simplifying techniques, the one 

very large core calculation (which is not do-able) is divided into very many small (moderate) 

size calculations (which are do-able). Therefore, the reactor calculations requires a large 

number of code executions. For example, to conduct a fuel loading optimization for a real 

reactor, a code should be executed for assembly models with different material composition, 

temperature and conditions by more than 200,000 times.  

The goal in this dissertation is to reduce the computational cost in utilizing the high-

fidelity computer simulation tools for sensitivity analysis, uncertainty quantification and 

design optimization by employing the surrogate modeling techniques and reduced order 

modeling techniques based on the subspace methodologies. One severe problem in applying 



www.manaraa.com

 

7 

the existing surrogate model techniques to reactor calculations is coming from the large 

number of input parameters (reaction cross sections), e.g., 5 610 ~10  depending on the model 

configurations, which poses the constructing a surrogate model impractical due to curse of 

dimensionality. The motivation is that the dimensionality issue of the surrogate modeling 

techniques can be alleviated by incorporating the reduced order modeling techniques to 

reduce the number of input parameters. Once the reduced transformation of input parameters 

is conducted appropriately, the surrogate model can be constructed economically and 

engineering analysis can be performed more efficiently .  

To achieve the objective, the dissertation involves the following three major research 

tasks: 

1. Developing a framework for the surrogate (reduced order) modeling 

management. In order to replace the original full order model, the surrogate model 

should be accurate enough within a required level of accuracy. Note that two sources 

of errors should be considered, i.e. error introduced by reduced order modeling and 

by surrogate modeling. The metrics to measure the errors and the methods for 

validating the approximate model are studied.    

2. Developing an efficient method for reduced order transformation. This study is 

mainly focused on the reduced order modeling on input-level reduction to alleviate 

the curse of dimensionality in surrogate modeling. The main idea of the reduced order 

modeling is to extract the influential components with respect to a physical model or 
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subsequent calculations. In addition to accuracy, the ease of implementation in 

practice is considered; the (semi-) automatization and parallelism.  

3. Incorporating the reduced order model with existing surrogate modeling 

techniques. With reduced order modeling, conventional analysis methods can be 

implemented more efficiently. Combining the reduced order model and surrogate 

model in higher order sensitivity analysis, uncertainty propagation and design 

optimization are investigated and novel algorithms are suggested by hybridizing 

methods to alleviate the curse of dimensionality.  

This dissertation is organized as follows. In Chapter 2, the general overview of nuclear 

power plants and the conventional reactor calculation procedures are provided to introduce 

the challenges in the current methods for reactor physics problems and core design 

calculations and to motivate this work. In Chapter 3, the literatures for surrogate modeling 

techniques, reduced order modeling techniques and other related works are reviewed and the 

state-of-art techniques are summarized. The main developments for reduced order modeling 

are described in Chapter 4. Starting from the basic concept, the fundamental mechanism of 

reduction in state-level and input-level and the algorithm for orthonormal basis construction 

with random samples are elaborated. Moreover, for multi-physics problems in which the 

several codes are coupled, the intersection subspace approach is proposed to achieve the 

further dimensional reduction while minimizing the error due to reduced order modeling. 

Because it is critical to estimate the error due to reduced order modeling and surrogate 

modeling; thus the general framework for dimensionally reduced surrogate modeling and 
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suggestions for error estimation and reduced order determination (i.e. size of active subspace) 

are provided in Chapter 4. In Chapter 5 ~ Chapter 9, the proposed hybrid reduced order 

modeling techniques are implemented to reactor physics calculations to investigate the 

feasibility and to explore its applicability. Especially, Chapter 5 utilizes the state-level 

reduction to build the reduced order adjoint system to estimate the state variables changes 

due to initial condition variations. In Chapter 6 and Chapter 7, the input-level reduction 

techniques are exploited to construct the surrogate models for second order approximation by 

Taylor series expansion (Chapter 6) and polynomial regression (Chapter 7), respectively. In 

Chapter 8 and Chapter 9, the intersection subspace approach is introduced into surrogate 

modeling for uncertainty propagation and design optimization, respectively. In Chapter 8, the 

intersection subspace is defined between uncertainties and sensitivities of input parameters 

and resulting basis is utilized to uncertainty propagation with the linear surrogate modeling 

and the nonlinear surrogate modeling. In Chapter 9, the intersection subspace is identified at 

the interface of serially coupled codes in reactor lattice model and applicability and 

reducibility are extensively examined for BWR and PWR assembly models. The conclusion 

is followed in Chapter 10. In Figure 1-1, the organization of this dissertation is depicted.  
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CHAPTER 2. NUCLEAR REACTOR CALCULATIONS 

 

Nuclear power plant utilizes the fission energy as a heat source to produce steam and 

ultimately to generate the electrical power. In the fission reaction, neutrons play the key role, 

thus it is important to estimate the behavior and the distribution of the neutrons accurately to 

design and operate the reactor core safely and economically. In this chapter, the general 

description of the nuclear power plant and the conventional procedures used in reactor core 

calculations for design are briefly overviewed. First, the general description of the nuclear 

power plant configurations is provided. Next, the mathematical expressions of the neutron 

distribution calculations are described. After that, the conventional methods to calculate the 

full core power distribution are presented to motivate the topic of this dissertation.  

 

2.1 Overview of Nuclear Power Plant 

As a power plant, the nuclear power plant mainly consists of the reactor vessel (core), the 

coolant system, the steam generators and the turbines. The heat generated by the fission 

reaction in the reactor core is delivered by the coolant system to steam generators where the 

steam is produced which rotates the turbines to generate the electricity. Only considering the 

electricity generation, the nuclear power plant has the same design concept with other power 

plants utilizing the heat engine. However, the fission reaction which entails the production of 
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hazardous radioactive materials makes the nuclear power plant to have unique design 

features.  

The schematics of the pressurized water reactor (PWR) power plant and the boiling water 

reactor (BWR) are shown in Figure 2-1 and Figure 2-2, respectively. For safety reasons, the 

coolant system is separated into isolated loops. For PWR, the water circulated in the primary 

loop, which is called the reactor coolant, removes the heat from the core and transfers it to 

the steam generators (SGs). After delivering the heat to the SGs, the reactor coolant is 

pumped back to the reactor core by the reactor coolant pumps (RCPs) to continue removing 

and transferring the heat from the core to the SGs. The water in the second loop, which is 

called feed water, is in vapor phase, i.e. steam, from SGs to condensers and is in liquid phase, 

i.e. water, from condensers to SGs. The steam produced in the steam generators rotates the 

turbines. Then, it is condensed to liquid phase in the condenser and pumped back to the SGs 

by the feedwater pumps continuously. The heat transfer between the primary loop and the 

second loop occurs through the steam generator tube walls in the SGs. The water in the third 

loop is called condensate which is from sea nearby or cooling tower and used to cool down 

the feedwater in the condenser. For BWR, the steam is produced in the reactor vessel, i.e. the 

primary loop is directly connected to the turbine system. As described above, each loop is 

isolated to prevent any radioactive material leakage to the environment. In addition, the 

reactor vessel, the SGs and the reactor coolant system are built inside of the containment 

building which has several safety features to protect the environment and the public due to 

the postulated accidents.  
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Figure 2-1. Schematic of Pressurized Water Reactor 

(http://38.96.246.204/cneaf/nuclear/page/nuc_reactors/pwr.html)  

 

 

Figure 2-2. Schematic of Boiling Water Reactor 

(www.ansn-jp.org/jneslibrary/npp2.pdf) 

 

The general arrangement of the reactor vessel of PWR and BWR are shown in Figure 2-

3 and Figure 2-4, respectively. The reactor vessel mainly consists of fuel assemblies, reactor 

internals, control rod drive mechanisms (CRDMs) and instrumental detectors. The reactor 

internals support the core, maintain fuel alignment and CRDMs, limit fuel assembly, direct 

http://38.96.246.204/cneaf/nuclear/page/nuc_reactors/pwr.html
http://www.ansn-jp.org/jneslibrary/npp2.pdf


www.manaraa.com

 

14 

coolant flow past the fuel elements and the pressure vessel head, provide gamma and neutron 

shielding and provide guides for the in-core instrumentation. The CRDMs consist of a group 

of individual absorber rods which are used to control the reactivity of the core under the 

operating condition and to shutdown the reactor in accident conditions. Instrumentation is 

provided in and out of the core to monitor the nuclear, thermal-hydraulic and mechanical 

performance of the reactor and to provide inputs to automatic control functions. The fuel is 

loaded in the reactor core, which is comprised of an array of fuel assemblies which are 

similar in mechanical design, but different in fuel enrichment. Each fuel assembly consists of 

the fuel rods which contain fuel pellets as shown in Figure 2-5. Typically, a fuel assembly 

consists of a square array of 179 to 264 fuel rods, and 121 to 193 fuel assemblies are loaded 

into an individual reactor. 

 

 

Figure 2-3. General Arrangement of PWR Reactor Vessel [Ivanov (1999)] 



www.manaraa.com

 

15 

 

 

Figure 2-4. General Arrangement of BWR Reactor Vessel  

(www.ansn-jp.org/jneslibrary/npp2.pdf) 

 

 

 

 

Figure 2-5. Diagram of Fuel Pellet, Fuel Rod and Nuclear Fuel Assembly 

(http://www.nrc.gov/about-nrc/emerg-preparedness/images/fuel-pellet-assembly.jpg) 

http://www.ansn-jp.org/jneslibrary/npp2.pdf
http://www.nrc.gov/about-nrc/emerg-preparedness/images/fuel-pellet-assembly.jpg


www.manaraa.com

 

16 

2.2 Reactor Physics 

The nuclear power plant utilizes the fission reaction to generate the heat. The energy 

produced in the fission reaction can be explained by Einstein’s mass-energy equivalence 

[Lamarsh & Baratta (2001)]. When a heavy nucleus splits into two lighter nuclei, the mass 

defect occurs and this mass defect appears as kinetic energy in fission products and neutrons. 

To make the heavy nucleus fission, the neutron is used as an incident particle. As an example 

of such a reaction, consider a neutron incident upon a U-235 nucleus [Duderstadt & 

Hamilton (1976)]: 

 235neutron fission product more neutrons energyU     (2.1) 

Those kinetic energies in fission products would be converted into heat as they slow 

down by colliding with adjacent atoms. Note that as a result of the fission reaction, more 

neutrons are produced. Those newly produced neutrons may induce more fission reactions, 

which is called the fission chain reaction. In thermal reactors, i.e. PWR and BWR, most of 

the fission reactions occur in the thermal energy region, therefore, the neutrons should be 

slowed down to induce the further reactions. During the slowing down process, the neutrons 

may be absorbed in non-fissionable material inside of the core or leak out from the system. In 

Figure 2-6, the schematic of a neutron life in reactor is depicted. In order to maintain the 

stable chain reaction, it is important to estimate the time varying neutron density and to 

design the core so that precisely one neutron from each fission reaction will induce another 

fission reaction. This can be expressed mathematically by defining multiplication factor k :  



www.manaraa.com

 

17 

 
Rate of neutron production in reactor

Rate of neutron loss in reactor
k   (2.2) 

If 1k  , the number of neutrons would not be changed and hence the chain reaction will 

be time-independent, i.e. steady state. The system characterized by 1k   is called critical. If 

1k   or 1k  , the number of neutrons will decrease or increase, which are called subcritical 

or supercritical, respectively. The primary objective of nuclear reactor design and operation 

is maintaining the reactor core in the critical state.  

 

Figure 2-6. A Schematic of Neutrons Life in Fission Chain Reaction  

[Duderstadt & Hamilton (1976), p.75] 

 

Reactor physics deals with the determination of the neutron distribution in space, energy 

and time, which is established by the interaction of neutrons with the materials of the system 

under consideration [Stamm’ler & Abbate (1983)]. Define the angular neutron flux: 

    , , , , , ,r E t vn r E t     (2.3) 
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where   3, , ,n r E t d rdEd   is the expected number of neutrons in 3d r  about r , energy 

dE  about E , moving in direction   in solid angle d  at time t  and v  is a neutron 

velocity. Then, an angular interaction rate  No. of interaction / sec  can be defined by: 

          , , , , , , , , , , , , ,f r E t v r E n r E t r E r E t         (2.4) 

The time rate of a neutron density change for an arbitrary volume V  can be given by: 

   3, , , gain rate in - loss rate from 
V

n r E t d r dEd V V
t

 
   

  
  (2.5) 

Considering the gain and loss mechanisms, the neutron distribution can be expressed 

mathematically by the neutron transport equation (Boltzmann equation): 
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 (2.6) 

where  

 , , ,r E t   : angular neutron flux 2 1 1 1[ sec ]cm sr MeV        

     , , ,t tr E t N r t E   : macroscopic total cross section 1[ ]cm  

     , ', ,f fr E t N r t E   : macroscopic fission cross section 1[ ]cm  

     , ' , ' , , ' , 's sr E E t N r t E E         : macroscopic scattering 

cross section 1[ ]cm
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 x E  : microscopic reaction cross section ( x  can be t , f  and s ) [
2cm ] 

 ,N r t  : nuclide number density at time t  [
3#/ cm ] 

 E  : fission spectrum 

v  : neutron velocity 1[ sec ]cm   

 E  : neutron yield per fission 

r  : independent variable for space (3 dimension) 

  : independent variable for neutron direction (2 dimension) 

E  : independent variable for energy [ ]MeV  (1 dimension) 

t  : independent variable for time  [sec] (1 dimension) 

Note that the Eq. (2.6) can be considered as a problem to find a solution of angular 

neutron flux distribution  , , ,r E t   with input coefficients determined by material 

properties, i.e. reaction cross sections,  , ,t r E t ,  , ',f r E t ,  , ' , ' ,s r E E t    , 

 E  and  E . The Eq. (2.6) can be solved analytically only in limited conditions with 

significant simplifications. One of the issues in Eq. (2.6) is the nuclide number density 

change. Because the nuclides are changed into other nuclides due to reactions, the material 

composition would be changed as the reactions occur. Note that the reaction is induced by 

neutrons, therefore there is a coupling between the flux and the nuclide concentration, i.e. the 

neutron transport equation requires the nuclide number density as material data while the 

nuclide density calculation (i.e. depletion calculation) requires the flux distribution. To 
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resolve this issue, the quasi-static assumption is introduced. The reactor core is assumed to 

steady-state and the depletion calculation is separated from the flux calculation, i.e. when 

calculating the flux, the number density is assumed to static, and vice versa. In order to 

balance the production and the loss of neutrons, the k -eigenvlaue is introduced; thus Eq. 

(2.6) becomes the eigenvalue problem.  
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 (2.7) 

where k  is k -eigenvalue (multiplication factor).  

Another issue is the energy dependency of the reaction cross sections. As shown in 

Figure 2-7, the cross sections are varied in a complicated way, which means that the cross 

sections cannot be expressed with a simple functional form. To deal with cross section 

energy dependency, one can discretize the continuous energy range into discrete energy 

intervals or groups. By integrating Eq. (2.7) over the g th energy group characterized by 

energies 
1g gE E E   , the Multi-Group (MG) equation can be obtained: 
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 (2.8) 

with the group constants  tg r , 
g , 

g ,  fg r  and  'sg g r . The total number of 

groups G  can be determined by the required level of accuracy.  
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Figure 2-7. Microscopic Fission Cross Section f  of 235U  [Lewis (2008)] 

 

The Eq. (2.8) can be solved by using spatial discretization method, e.g. method of 

characteristic (MOC) or nodal expansion methods [Lewis & Miller (1984)]. Note that if the 

space r  is discretized into N  nodes, the energy E  into G  groups and the angle   into A , 

the total number of equations to be solved would be N G A  .      

 

2. 3 Conventional Reactor Core Calculations 

Nuclear reactor cores are constructed in a highly heterogeneous configuration to facilitate 

thermal design (coolant channels, heat-transfer surfaces), mechanical design (structural 
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integrity, fuel fabrication and handling), and reactivity control (control rods, burnable 

poisons, instrumentation). Such heterogeneities in the reactor fuel array or lattice must be 

taken into account in nuclear design since they will cause a local spatial variation in the 

neutron flux which may strongly influence core multiplication.  

One example is the self-shielding effect [Duderstadt & Hamilton (1976), p.404]. Note 

that neutrons born in fission events in the fuel have to slow down in the moderator, i.e. 

thermalize, and then must diffuse back into the fuel to induce a further fission. However, the 

highly absorbing nuclei near the surface of the fuel pin tend to absorb the thermal neutron 

diffusing back in from the moderator and hence in effect shield the fuel nuclei in the interior 

of the pin. This leads to the depression of the thermal flux in the fuel. If the fuel pin is 

homogenized or calculated by coarse mesh without properly considering self-shielding 

effect, the multiplication factor would be incorrect.  

Another example is the hot channel factor [Duderstadt & Hamilton (1976), p.503]:  

 
average heat flux of the hot channel

average heat flux of the channels in core
F   (2.9) 

where the hot channel is defined as the coolant channel in which the maximum heat flux 

occurs. Because the fuel has very low heat conductivity, the temperature is varied 

significantly inside of the fuel pin. In order to ensure the fuel integrity, the hot channel factor 

is used as a design and an operation limitation. If one can ensure that thermal conditions of 

this channel remain below the core limitations, the remaining channels in the entire core will 

presumably fall within design limitations. Note that the heat source is calculated by 

multiplying the fission reaction rate density by the recoverable energy released per fission 
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event. Therefore, in order to calculate the hot channel factor correctly, the neutron 

distribution should be provided accurately.  

Note that the number of equations to be solved is N G A   where N  is the number of 

spatial nodes, G  is the number of energy groups and A  is the number of angular meshes. If 

only one dimension is considered, the N  increases proportionally. However, for example, 

two dimension (i.e., x  and y  direction) is considered, the N  increases exponentially, i.e. 

1 2N N  where 
1N  and 

2N  is the number of discretization along x  and y  direction, 

respectively. Though a powerful computer is used, the detailed treatment both of the spatial 

variation and the energy group dependency would be unmanageable.   

In practice, full-core calculations are divided into three steps, i.e. pin-cell, assembly and 

core calculations and in each step, the each energy and spatial dependencies are considered in 

different levels. Also, in each step, the resonance self-shielding calculations are involved as a 

pre-processing of the group constants. For pin-cell calculations, a very finely structured 

many-group calculation is performed to calculate the intra-group fluxes while the spatial 

dependency is ignored or crudely approximated. These intra-group fluxes are then used to 

calculate the multi-group (MG) constants for a coarse group calculation including spatial 

dependence by [Duderstadt (1976), p.409]: 
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where iV  is the volume of the pin cell. Note that the MG constants defined by Eq. (2.10) can 

be considered as the flux weighted, energy group collapsed and volume homogenized very 

fine-group constants. After pin-cell calculation, the assembly calculation is conducted with 

MG constants and heterogeneity considerations, i.e. spatial dependency, to generate few-

group (FG) constants in the same way with the pin-cell calculation. Then, as the final step, 

these assembly-averaged group constants are used to determine the flux and power 

distribution over the entire core. For the heterogeneous full-core calculations, each assembly 

is considered as a node, and power reconstruction methods or form factor methods can be 

used if the detailed distributions inside the nodes are required. In this way, one can 

characterize each unit by effective group constants accounting for the inhomogeneous flux 

distribution. This scheme is summarized in Figure 2-8.  

 

 

Figure 2-8. Heterogeneous Core Calculations 
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As explained above, the reactor physics calculations are divided into several steps to 

alleviate the computational cost. Consider the lattice calculations, i.e. assembly calculation, 

for generation of the few-group homogenized cross sections. The core simulators are using 

them as input parameters to calculate the full-core neutron distribution and power 

distribution. Note that the core simulations are typically conducted by nodal methods, i.e. 

each assembly is considered as a node characterized as a single homogenized and group-

condensed mixture. Because the homogenization and the group condensation are 

approximation techniques, the calculation results have discrepancy to the heterogeneous 

calculation (no approximation). In order to improve the accuracy and preserve the reaction 

rate and leakage rate, the discontinuity theory is introduced and assembly discontinuity 

factors (ADF) are used for full core nodal calculations. Also, to reconstruct the neutron 

distribution in the assembly, the power reconstruction techniques, e.g. form factor, have been 

suggested. The group constants, i.e. few-group cross sections, and other factors are called as 

homogenization parameters.  

It is important to note that the homogenization parameters are varied according to 

physical conditions, which is not known before the core design is fixed. For example, the 

resonance parameters are functions of the temperature, e.g. Doppler effects. However, the 

temperature of the assembly can be found after the location of the assembly is determined 

and the other factors, e.g. thermal-hydraulic heat transfer, are known. Note that the purpose 

of the core simulation is to determine the fuel loading pattern and design optimization; thus, 
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the temperature is not known a priori. Therefore, another approximation technique is 

introduced to core simulators; few-group constant functionalization.  

For functionalization, the assembly lattice calculations are conducted with several 

different conditions as branch calculations and then, a set of FG constants are provided to the 

core simulator. The core simulator builds each FG constant as a function of the physical 

conditions, i.e. moderator density, fuel temperature, burnup, etc. Then, taking into account all 

possible physical condition changes, the reference FG constants are adjusted before put into 

nodal equations.  

As an example, the FORMOSA-B updates the FG cross sections as [Moore et al. (1999)]: 

 ,VH IV CRH TF FP CRD       (2.11) 

where, given explicit arguments,  

 , , , , ,VH IV VH IV

fBU R       : moderator density history and instantaneous 

moderator density,  

 , , ,CRH CRH

fBU R       : control rod history,  

  , , ,TF TF

fBU T    : fuel temperature, 

  , , , ,FP FP FP

f gBU R         : fission products, 

  , , ,CRD CRD

fBU R    : control rod insertion. 

Note that the nodal exposure, moderator density history (void history) and control rod 

history are given as: 
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   nodal exposure :    
 

0

BU i

BU i d BU i     

   moderator density history (void history):  
 

   
 

0

1
BU i

i i d BU i
BU i

      

   control rod history:  
 

 
 

0

1
BU i

f fR i R d BU i
BU i

     

where BU  is a burnup (exposure),   is an instantaneous moderator density, 
fR  is a control 

rod insertion 0 1fR   and 
fT  is a fuel temperature. One can notice that the FG constants 

are functionalized with the parameters, i.e. burnup, moderator density, control rod insertion 

and fuel temperature.  

The lattice calculation is also divided into several calculations: resonance calculation, 

transport calculation, and depletion calculation. The schematic of the procedure is depicted in 

Figure 2-9. According to the physical configurations, e.g. geometry, material composition, 

temperature, the reaction cross sections are prepared to take into account the resonance and 

the temperature effects. Then, the transport calculation is conducted to calculate the neutron 

flux distributions. After that, the depletion calculation can be performed to calculate the 

nuclide number density at the next time step with an assumption that the flux is not changed, 

i.e. quasi-static assumption. The few-group constants can be calculated by using the flux and 

the resonance self-shielded macroscopic cross sections. Note that the most computational 

load is on the transport calculation.  
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As mentioned above, in the level of FG constant generation, the physical conditions of 

the assembly are not fully provided, i.e. the fuel temperature and moderator temperature and 

density are not known yet. The core simulator, e.g. FORMOSA-B, requires the branch 

calculations to functionalize the FG constants. In every depletion steps, the branch cases with 

different conditions, e.g. fuel temperature or moderator density, are also evaluated and sets of 

FG constants are constructed.  

 

Resonance Calculation

Transport Calculation

Depletion Calculation

Model Data 

 0 , , ,f mT T N t

:  self-shielded macro-scopic cross sectionSS

MG

:  neutron fluxMG

 1 :  nuclide number density at the next time step N t 

1t t 

FGFG Calculation

 

Figure 2-9. Schematic of Lattice Calculation 
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The main focus of this dissertation is on the assembly averaged group constant generation 

(i.e. FG constant generation). In realistic core calculations, the required number of assembly 

calculations is very large. As an example, consider TMI-1 reactor core [Ivanov (1999)] 

which consists of 241 assemblies, 177 fuel assemblies and 64 reflector assemblies. Assuming 

one-eight symmetry of the core, the 30 different types of assemblies should be considered for 

radial geometry for each axial layer. Some assemblies may contain different types of control 

rods. For the power distribution change due to depletion, the burnup of the fuel material, the 

temperature change of the fuel and the moderator density variations should be considered. As 

an example, assume that 2 control rod insertion cases (in or out), 3 fuel temperature and 3 

moderator density are required for all assembly types, i.e. 30 different types at 40 depletion 

time steps. Therefore, the total required number of assembly calculations for FG constant 

generation would be: 

 30 40 2 3 3 21,600      (2.12) 

Just for the flux distribution (power distribution) calculation, 21,600 sets of FG constants 

are required, which implies that the MG neutron equation should be solved 21,600 times. 

One can see that this number would increase easily if one put more data points, e.g. more 

depletion time steps or assembly types. Moreover, if considering safety criteria or feedback 

from thermal-hydraulics or material structures, the physical configuration would be changed 

and the whole process of reactor physics calculation should be repeated. In this case, the 

uncertainty quantification or data assimilation are out of question because they require 
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inevitably repetitive code executions to capture the input parameter variations due to 

uncertainty.  
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CHAPTER 3. LITERATURE REVIEWS 

 

This dissertation employs the surrogate modeling techniques and the reduced order 

modeling techniques to reduce the computational cost in nuclear reactor calculations and to 

utilize the high fidelity codes efficiently. Though those methods have been already suggested 

by many researchers and used in variety fields which are dealing with expensive computer 

codes, those are yet not popular in nuclear engineering community. In this chapter, the brief 

literature survey about the related works is presented to figure out the current issues. First, 

the overview of the surrogate modeling techniques and recent trends are summarized. 

Second, the reduced order modeling techniques and related works are reviewed. The other 

works related to this dissertation are also addressed. The conclusion of literature review is 

followed to highlight the motivation and the objectives of this dissertation.  

 

3.1 Surrogate Modeling Techniques 

The surrogate model is also called as a meta-model or an approximated model according 

to research communities and authors. There are many different surrogate models and those 

have been widely used in many different areas: for some examples, Isukapalli et al. (1998) 

used stochastic response surface methods for uncertainty propagation and applied to a 

biological system (i.e. estimate the effective doses of toxic chemical in human body) and 



www.manaraa.com

 

32 

environmental problem (i.e. estimate pollutant concentrations in the atmosphere). Doebling 

et al. (2002) suggested a framework to employ the meta-model to enhance the model 

validation procedure. Anile et al. (2003) employed the stochastic response surface method to 

microelectronics to determine the effect of parameter variations on the output of a given 

system. Giunta et al. (2004) compared three types of sampling methods (i.e. Monte Carlo 

sampling, Latin hypercube sampling, and orthogonal array sampling) to generate data to 

build the response surface approximation along with two types of approximation methods 

(i.e. kriging interpolation and multivariate adaptive regression splines) for a Rosenbrock 

function. Chen et al. (2006) derived Tensor-product basis functions and analytical 

formulation for sensitivity analysis and uncertainty quantification and demonstrated on the 

design optimization of engine piston. Ghanmi et al. (2006) proposed a method to determine 

the optimal and robust design with respect to the uncertainties of design parameters of finite 

element models using stochastic response surface method and demonstrated the method on 

the coupled beam problem and the helicopter landing gear modeling. Liem (2007) introduced 

the multi-agent collective method to reduce the computational cost in aviation system model 

for environmental impact estimation. Laurenceau & Meaux (2008) investigated the response 

surface (kriging) based optimization framework and compared to traditional quasi-Newton 

gradient method with CFD problems. Kewlani & Iagnemma (2008) employed the stochastic 

response surface approach to take into account the terrain parameter uncertainty in mobile 

robot mobility. (for more application examples, see Goel (2007), Viana (2011) and website 

of SUMO Lab. http://www.sumo.intec.ugent.be ).  

http://www.sumo.intec.ugent.be/
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In nuclear engineering, there were attempts to use the surrogate modeling
2
 for the plant 

control, the signal monitoring and diagnosis, the prediction of the system parameters and the 

artificial neural network (ANN) were dominant. Excellent reviews can be found in Pazsit & 

Kitamura (1996), Uhrig & Tsoukalas (1998), Schirru et al. (1999), Hines & Uhrig (2005), 

Guo et al. (2010) and Faghihi et al. (2011). For examples of the application to the plant 

control, Ku et al. (1992) used the diagonal recurrent neural networks with adaptive learning 

rate scheme to control nuclear reactor temperature. Boroushaki et al. (2003) and Boroushaki 

et al. (2004) used an updatable recurrent neural network to design an on-line intelligent core 

controller for load following operations and the axial offset control of PWR nuclear reactor 

core during load following operation, respectively. For the plant monitoring and diagnosis, 

Hwang (1993) studied an approach based on neural networks for detecting and diagnosing 

instrument failures in nuclear power plants. Kim & Bartlett (1996) developed artificial neural 

networks to monitor and control nuclear power plant systems and support plant personnel 

providing a faulty diagnosis. Na et al. (2003) used the fuzzy neural network to estimate an 

output signal for failure detection. Vinod et al (2003) developed an operator support system 

known as Symptom Based Diagnostic System (SBDS) to identify the initiating event and 

inform the operator with the proper corrective actions. Lee et al. (2005) also developed an 

accident diagnosis advisory system (ADAS) using modified dynamic neural network 

(MDNN) and dynamic neuro-fuzzy network (DNFN) to help operators with information 

gathering, planning and decision making during abnormal conditions. Santosh et al. (2007), 

                                                 
2
 In nuclear engineering literature, it is called as data-based model or information-driven 

model (cf, physical model) instead of surrogate model. 
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Kupka & Meloun (2009) and Santosh et al. (2009) used the artificial neural networks for 

identification of accident scenarios and proper actions. The neural networks was also used to 

predict the thermal power distribution of nuclear power plant [Roh et al. (1991), Tanabe and 

Yamamoto (1993), Dubey et al. (1998), Na et al. (2004), Montes et al. (2009), Malik et al. 

(2010)]. Bakal et al. (1995) and Ortiz & Requena (2003) used neural networks to predict core 

parameter changes in transient. Choi et al. (2004), Ridluan et al. (2009), Wei et al. (2009) and 

Patra et al. (2010) used artificial neural networks to simulate the thermohydraulic behaviors 

of nuclear power plants. Mazrou & Hamadouche (2004), Perez-Cruz & Poznyak (2007) and 

Khalafi & Terman (2009) designed a research reactor by neural networks model. The 

prediction capability of neural networks introduced into fuel reloading optimization [Jang et 

al. (2001), Yamamoto (2003), Sadighi et al. (2002), Erdogan & Geckinli (2003), Ortiz & 

Requena (2004) and Hedayat et al. (2009)]. Ramu et al. (2010) employed the response 

surface modeling, Kriging and neural network to optimize the design of the roof slab of a 

nuclear reactor using finite element software ANSYS. Other than the neural networks, 

Roderick et al. (2010) applied the polynomial regression method to estimate the temperature 

on the centerline of the fuel pin and Lockwood & Anitescu (2010) suggested the gradient-

enhanced kriging to improve the accuracy of the kriging model and demonstrated it with 

nuclear reactor simulation code. Also, kriging is used to analyze the LB-LOCA [Joucla et al. 

(2011)].  

In reactor physics (neutronics problems), the first order Taylor expansion has been used 

to estimate the response changes due to input parameter variations. The adjoint based 
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approach has been recognized as the most efficient method to calculate the first order 

derivative information, which is further used in uncertainty propagation and data assimilation 

[Cacuci (2003)]. 

Note that the surrogate is basically constructed by executing the original model at 

different points in the parameter space as many times as can be afforded and a functional 

form for the surrogate is assumed with some undetermined coefficients, which are 

determined via a minimization procedure that reduces the discrepancies between the 

surrogate and the original model’s predictions at all available points. For more rigorous 

surrogate modeling, the framework for constructing and utilizing a surrogate model is 

established by many authors [Booker et al. (1998), Queipo et al. (2005), Barton (2009), 

Forrester & Keane (2009)]. The main procedure can be summarized as in Figure 3-1. First 

step is to determine the variables to be considered. Because the number of unknown 

coefficients in a surrogate model increases super-linearly, the screening of dominant input 

parameters are recommended to reduce the computational cost. Next step is to generate the 

training sets to determine the unknown coefficients. These samples can be generated simply 

by random sampling, i.e. Monte Carlo sampling, however, to achieve the better design space 

representation, the structured sampling techniques, e.g. Latin Hypercube sampling [McKay 

(1989)], orthogonal array (OA) [Owen (1992)] and other optimal methods [Tang (1984), 

Johnson et al. (1990)] are recommended. The unknown coefficients in a surrogate model are 

determined by minimizing the discrepancy between the original model calculations and the 

surrogate model estimations.  



www.manaraa.com

 

36 

The prominent surrogate modeling techniques may be response surface modeling (RSM) 

[Myer et al. (2008)], kriging [Sacks et al. (1989a)], radial-basis function [Hardy (1971)], 

kernel-based function [Nadaraya (1964)], multivariate adaptive regression spline (MARS) 

[Friedman (1991)] and neural network [Smith (1993)]. Those are compared in Table 3-1 

based on the discussions of Goel (2007), Barton (2009) and Forrester et al. (2009). As the 

final step, the constructed surrogate has to be validated to ensure its accuracy. Split sample 

(SS), Cross-validation (CV) and Bootstrapping methods can be used to estimate the error of 

the surrogate model [Queipo et al. (2005)].  
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Table 3-1. Functional Form of Surrogate Models  

Surrogate 

Type 
Functional Form 

Applic

ability 

Comp. 

Cost 

Recommended 

Condition 

RSM    
1

N

est i i j

i

y x f x





  Local Low 

20, 500v sN N   

Only for smooth 

functions 

KRG      
1

N

est i i

i

y x f x x


 


   Global High 

20, 500v sN N 

smooth and fast 

varying functions 

RBF    
1

RBFN

est i i

i

y x w h x


   Local High 

20, 500v sN N 

good for fast 

varying functions 

KBR     
1

,
sN

i

est i

i

y x G x x b


   Global Low 20, 500v sN N   

BNN      |,est N w Dy x f x w p w dw


   Global High 
good for complex 

functions 

SPD  
   

 

1

1

b

b

N

i i

i
est N

i

i

w x P x

y x

w x










 Global High Not Found 

* RSM: response surface model, KRG: Kriging, RBF: radial basis function, KBR: kernel-

based regression, BNN: Bayesian neural network, SPD: Shepard 

* 
vN : number of variables, 

sN : number of samples (training data) 
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Preliminary Experiment : 

Determine the variables to be considered

Design of Experiment :

1) Determine the sampling strategy

2) Generate the observations

Surrogate Model Construction:

1) Determine a surrogate model type

2) Build a model by the observations

Validation:

1) Determine the surrogate model accuracy

2) Add new design(s) if needed
 

Figure 3-1. General Framework of Surrogate Model Construction 

 

Comparative studies on different combinations of sampling strategies and surrogate 

modeling types have conducted by many researchers [Friedman and Stuetzel, 1981, 

Yakowitz & Szidarovsky, 1985, Laslett, 1994, Giunta & Watson, 1998, Jin et al., 2001, 

Simpson et al., 2001, Macdonald, 2009, Zhao & Xue, 2009]. The common conclusion is that, 

depending on the problem under consideration, a particular modeling scheme (i.e. sampling 

strategy + surrogate model type) may outperform the others, however, in general, it is not 

known a priori which one should be selected [Goel, 2007].  

As an effort to improve the accuracy of the surrogate, hybrid surrogate modeling 

techniques are suggested. Varadarajan et al. (2000) suggested the combined RSM+ANN 
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(response surface modeling + artificial neural network) approach to improve the prediction 

accuracy and complement each other’s limitations. Qian et al. (2006) proposed 2-step 

approach (approximate simulation stage and detailed simulation stage) to reduce the number 

of computationally expensive simulations. Recently, multiple surrogate-based analysis and 

optimization approaches have been suggested. Zhou et al. (2007) suggested an approach to 

calculate many surrogate models simultaneously and choose best one for optimization. Zerpa 

et al. (2005), Goel et al. (2006b) and Glaz et al. (2009) proposed the multiple surrogate-based 

analysis approach utilizing the weighted average of the individual surrogates. Zhao & Xue 

(2009) combined the multi-surrogate methods by Bayes’ theorem in view of conditional 

probability.  

 

3.2 Reduced Order Modeling Techniques 

Several reduced order modeling methods are available and those are well-summarized by 

Villemagne & Skelton (1987), Freund (1999, 2000), Bai (2002), Fodor (2002), Antoulas et 

al. (2006) and Penzl (2006). Reduced order modeling techniques have been used in various 

fields and extended by many authors. For example, Park & Jung (2000) developed a 

recursive algorithm employing Karhunen-Loève Galerkin procedure for multidimensional 

inverse heat conduction problems. Banks et al. (2002) utilized the proper orthogonal 

decomposition method to analyze the feedback control of thin film growth in a high-pressure 

chemical vapor decomposition reactor. Phillips (2003) explored the Krylov-subspace-based 

reduction methods for nonlinear time-varying circuit systems. Rewienski & White (2006) 
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extended the reduced order modeling techniques for nonlinear dynamical systems based on 

trajectory piecewise-linear (TPWL) approximations and demonstrated on a micromachined 

switch, nonlinear electronic circuits and shock propagation modeled by Burgers’ equation. 

Daescu & Navon (2007) developed a proper orthogonal decomposition-based reduced 

second-order adjoint model to facilitate a Hessian-free truncated Newton (HFTN) 

minimization algorithm for 4D-Var data assimilation.  

The reduced order modeling methods appear in literatures are Balanced Trucation 

[Moore (1981)], optimal Hankel norm approximation [Glover (1981)], Krylov-based 

methods [Bai (2002)] and Proper Orthogonal Decomposition (POD). In circuit modelings 

(i.e. linear time-invariant (LTI) and linear time-varying (LTV) problems), the Krylov-based 

method [Feldmann & Freund (1995)] and the balanced truncation methods [Moore (1981)] 

are popular. For nonlinear fluid dynamics problems, the POD methods are dominant [Lumley 

(1967), Berkooz et al. (1993), Holmes et al. (1996)]. 

As pointed by Antoulas et al. (2006), most of the model reduction methods are based on 

projection. Most works have been conducted to reduce the system of equations, i.e. reducing 

the state variables. To illustrate this, consider an time-dependent nonlinear partial 

differential equation in a form [Chaturantabut & Sorensen (2009)]: 

 
 

     
,

, ,
y x t

L y x t F y x t
t


 


 (3.1) 

where L  denotes a linear spatial differential operator and F  is a nonlinear function of a 

scalar variable. By spatially discretizing, a system of nonlinear ordinary differential 

equations can be given by: 
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       
d

y t y t y t
dt

 A F  (3.2) 

where  0,t T  denotes time,      1

T n

ny t y t y t    , n nA  is a discrete 

approximation matrix of the operator L , F  is a nonlinear function evaluated at  y t , i.e., 

     1

T

nF y t F y t   F   with appropriate initial conditions. Let the n rV  be a 

matrix whose orthonormal columns are the vectors in the reduced basis. Then, the  y t  can 

be projected onto the basis by: 

    T

ry t y tVV V  (3.3) 

where   r

ry t  . Substitute Eq. (3.3) to Eq. (3.2), then the reduced-order system can be 

obtained by: 

       T

r r r r

d
y t y t y t

dt
 A V F V  (3.4) 

where T r r

r

 A V AV  is an approximation of the matrix A . Due to reduced 

dimensionality, the problem can be solved efficiently with lowered computational cost, e.g. 

floating point operations and memory requirements. Note that the choice of the reduced basis 

would determine the quality of the approximated solution.  

The POD may be the most famous method because its derivation is numerically tractable 

for very large scale systems [Astrid (2004)]. According to Berkooz et al. (1993), POD 

rediscovered independently by several scientists, e.g. Kosambi (1943), Loève (1945), 

Karhunen (1946), Pougachev (1953) and Obukhov (1954). Depending on the field of 
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research, the POD is also called as principal component analysis (e.g. statistics), Karhunen-

Loève decomposition (signal analysis and pattern recognition) and the method of empirical 

orthogonal function (EOF) in geophysical fluid dynamics and meteorology [Homescu et al. 

(2007)]. Originally POD was used as a data representation technique (i.e. data analysis and 

compression), combined with the Galerkin projection procedure, POD can be used to 

generate lower dimensional models of dynamical systems [Rathinam & Petzold (2003)].  

POD has been widely used in various fields (e.g. fluid mechanics, image processing, 

electrical circuit, pattern recognition, control, inverse problems) and extended by many 

authors. For example, Astrid et al. (2008) developed the method of missing point estimation 

(MPE) to enhance the efficiency in computing Galerkin projections over a restricted subset 

of the spatial domain. Varshney & Armaou (2008) suggested POD with updates in which the 

empirical eigenfunctions are continuously modified as additional data from the process 

becomes available. Chaturantabut & Sorensen (2009) combined the POD with discrete 

empirical interpolation method (DEIM) to further reduce the complexity of nonlinear models. 

Xu et al. (2010) introduced the recursive proper orthogonal decomposition (rPOD) method 

based on the operator perturbation theory to incorporate new data at each sampling time for 

cyber-physical systems. 

Error due to reduced approximation has been extensively studied. For POD, the error 

bound can be estimated by [Lall et al. (2002), Astrid & Verhoeven (2006), Bui-Thanh et al. 

(2007), Chaturantabut & Sorensen (2000)]: 

 
2 2

2
1

n

r i

i r

y y 
 

    (3.5) 
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or in a relative sense,  

 

2

1

2

1

r

i

i

n

i

i















 (3.6) 

where i  for 1,...,i n  are singular values of the snapshot matrix T n n Y UΣV  in 

which  1 ndiag  Σ . Benner et al. (2003) summarized the error estimates of 

balanced truncation, singular perturbation approximation and Hankel-norm approximation 

for stable and unstable systems. Reis & Stykel (2005) derived the error bounds for coupled 

system. For approximation approaches of nonlinear dynamic problems, Rathinam & Petzold 

(2000) and Rewienski & White (2006) derived the error estimation for power series 

expansion method and piecewise-linear approximation, respectively.  

When the parametrized system (i.e. the system of equations contains uncertain 

parameters) is considered, the error estimation of a reduced model becomes very 

complicated. Grepl & Patera (2005) proposed the error estimation for greedy adaptive 

reduced-basis approach for parametrized parabolic PDEs. Homescu et al. (2007) derived the 

error estimation based on the small sample statistical condition estimation method and 

adjoint method to define regions of validity of the reduced models. Haasdonk & Ohlberger 

(2008) suggested the error estimation of reduced basis techniques for finite volume 

approximation of parametrized evolution equations. Klindworth et al. (2011) employed the 

empirical interpolation method to approximate the parametrized functions and provided 

associated error bound. On the other hand, Galbally et al. (2009), Buithanh & Willcox (2008) 
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and Liberman et al. (2010) simply used a set of test samples to evaluate the state variable 

representation accuracy of a reduced order model:  

 
   

 test

r

rel

y y
mean

y

 





          [Galbally et al. (2009)] (3.7) 

where 
test

  is the test set.  
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     [Bui-Thanh & Willcox (2008)] (3.8) 

where ey , ay  and 0y  are the exact, approximate and nominal outputs, respectively.  

                     
2rE y y and  

2
var ry y

  
[Liberman et al., (2010)]  (3.9) 

where  E  is a sample mean and  var  is a sample variance.  

 

3.3 Randomized Matrix Approximation 

Though low rank matrix factorization is one of the most useful tools in scientific 

computing and data analysis, classical methods for low-rank factorization of an m n  matrix 

into two matrices of rank k  require  O mnk  floating-point operations and at least k  passes 

from the data storage [Sapp, (2011)]. In modern applications with very large matrices, the 

classical methods may not be suitable due to computational cost. Randomized algorithms 

have been recently received a great attention as a powerful tool for accelerating the 
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approximate matrix decomposition methods. Compared to traditional techniques, randomized 

low-rank approximation methods have several advantages: 1) smaller computational cost, 

e.g.     2logO mn k m n k   flops for an approximate SVD, 2) inherent stability, 3) 

parallelism [Halko et al., (2011)].  

Given an m n  matrix A , the basic challenge in low-rank matrix approximation is to 

find a matrix with k  orthonormal columns such that 

 
2

T  A QQ A  (3.10) 

where   is a positive error tolerance. Note that the range of Q  is a k -dimensional subspace 

that captures most of the action of A . Once the matrix Q  is given, the low-rank factorization 

can be constructed by forming A QB  where 
TB Q A . One can compute a standard 

factorization (QR, SVD, etc) on the matrix 
k nB  with reduced cost and recover a 

standard factorization by pre-multiplying Q  on it. With random sampling, the matrix Q  can 

be constructed efficiently.  

To illustrate the range finding algorithm with random samples, suppose the problem of 

finding basis for the range of a matrix A  with exact rank k . Repeat a process of drawing 

random vector x  of which entries are randomly generated and forming the product y x A : 

 
   

,      1,...,
i i

y x i k A  (3.11) 

Owing to randomness, one can assume that the randomly generated vectors 
 i

x  for 1,...,i k

are linearly independent and resulting vectors 
 i

y  for 1,...,i k are also linearly independent 
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[Abdel-Khalik, (2004)]. By linear algebra, the vectors 
 i

y  for 1,...,i k  spans the range of 

the matrix A ; thus, the orthonormal basis of range of the matrix A  can be constructed by 

orthonormalizing the vectors 
 i

y  for 1,...,i k . Basic algorithm can be summarized as 

follows [Halko et al., (2011)]:  

Given an m n  matrix A , a tolerance tol  and an integer s , an matrix Q  whose 

columns are orthonormal and whose range approximates the range of A can be 

constructed with standard Gaussian random vectors
3
. The constructed basis Q  satisfies 

the following statement with probability at least 1 10 s : 

     

2 1,..., 2

2
10 max

iT T

i s
z

 
  I QQ A I QQ A  

Step 1) Pick t  standard Gaussian random vectors:    1
,...,

t
x x   

Step 2) Calculate:    i i
y x Α , 1,...,i t  

Step 3) Find an orthonormal set such that: 
      1

1,..., ,...,
t

tspan y y span q q  

Step 4) Let  1

n t

tq q  Q   

Step 5) Pick s standard Gaussian random vectors:    1
,...,

s
w w   

Step 6) Calculate: 
   i i

z w A , 1,...,i s  

Step 7) Calculate:       i iTz z


 I QQ , 1,...,i s  

Step 8) If   
1,...,

max
i

tol
i s

z 



 , let r t

 

                                                 
3
 Standard Gaussian random vector is the one of which entries are independent Gaussian 

random variables with mean zero and variance one.  
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            Otherwise, increase t  and go back to Step 1. 

 

To achieve faster implementation, i.e. smaller flops, many researchers suggested 

improved algorithms with probabilistic error bound. One can fine excellent review in Halko 

et al (2011) and Mahoney (2011).  

Independently, Abdel-Khalik (2004) proposed the efficient subspace methods (ESM) to 

approximate the action of very large, dense and numerically rank-deficient matrix operators 

only by matrix-vector operations. In ESM, the random perturbed input parameters are 

utilized to extract the influential subspace with respect to output response and to reconstruct 

the operator in a lower rank. Focusing on the numerical tests, ESM-based algorithms for 

sensitivity analysis, uncertainty quantification and data assimilation were suggested for linear 

or quasi-linear problems [Abdel-Khalik et al. (2008)].  

 

3.4 Other Related Works 

Spectral Expansion 

The spectral expansion approach for the stochastic partial differential equations (SPDEs) 

is suggested by Ghanem & Spanos (1991) to deal with parametrized problems. In that, the 

random algebraic equations arising from spatial discretization of stochastic PDEs are solved 

using a polynomial chaos (PC) expansion approach. The basic idea is to represent the 

response process by a linear combination of multidimensional polynomials with 
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undertermined coefficients, which can be uniquely computed by Galerkin scheme. Eldred 

(2009) summarized the set of polynomials which provide an optimal basis for different 

continuous probability distribution types. The stochastic expansion can also be formed as a 

sum of a set of multidimensional Lagrange interpolation polynomials, in which there is no 

need for tailoring of the expansion form as there is for polynomial chaos expansion [Webster 

(2007)]. In these methods, the solution is approximated by: 

  
0

N

i i

i

R  


   (3.12) 

where i  is a coefficient and  i   is a multivariate polynomial of random variable  . N  

is the number of terms in spectral expansion and given as    / ! !n r n r  where n  is the 

number of inputs and r  is the order of expansion. Note that as the number of inputs or order 

increases, the number of terms increases super-linearly and so does the number of 

coefficients. Note that the solution is approximated in these spectral expansion methods 

while the model is approximated in surrogate modeling methods.  

The spectral expansion approach can be boiled down to determine the unknown 

coefficients i . Basically, those can be determined by intrusive methods [Ghanem & Spanos 

(1991)] or non-intrusive methods [Acharjee & Zabaras (2007)]. When it comes to intrusive 

methods, one can calculate the coefficients exactly by utilizing the orthogonality. However, it 

requires to solve a very large size of problem. On the other hands, in non-intrusive methods, 

numerical integration can be used to determine the unknown coefficients which requires a 

large number of samples. Tensor product quadrature or Smolyak sparse grid method are one 
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way to calculate the coefficients efficiently [Eldred (2009)]. However, it is the fact that the 

spectral expansion approach suffers from the curse of dimensionality. 

To alleviate the difficulties, Nair & Keane (2000a, 2000b), Nair (2001) and Nair & 

Keane (2003) have been suggested the reduced order modeling polynomial chaos expansion 

method (ROM-PCE) in which the reduced order modeling is incorporated to spectral 

expansion. This idea has been further studied and used by Acharjee & Zabaras (2006), 

Sachdeva et al. (2006a, 2006b), Maute et al. (2009) and Boraval et al. (2010). According to 

Maute et al. (2009), there are two approaches: ROM-PCE (i.e. model reduction and then 

polynomial expansion) and PCE-ROM (i.e. polynomial expansion and then model 

reduction).  

 

3.5 Conclusion 

As a summary of the surrogate modeling techniques,  

 The surrogate modeling techniques have been used in various fields (e.g. fluid 

dynamics, structural mechanics, biochemistry, oceanic geophysics, aerodynamics and 

nuclear engineering).  

 There are several surrogate modeling methods available (e.g. polynomial regression, 

Kriging, radial-basis functions, kernel-based regression, neural network, multivariate 

adaptive regression splines).  
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 Except the original function form is known are a priori, the analytical error 

estimation is not available. Therefore, the test set is used to validate the surrogate 

model and the surrogate modeling construction should be in adaptive way.  

 Comparative studies pointed out that a surrogate modeling technique may be superior 

than others according to the problem conditions, i.e. there is no absolutely superior 

surrogate modeling technique. Thus, the multi-surrogate modeling has been studied 

to complement other individual techniques.  

 The curse of dimensionality is widely recognized. In the reviewed works, the 

surrogate modeling was applied to small dimensional problems ( 20 ) and the 

training set of which the size is more than 10 times larger than the number of inputs 

are used to construct (learn) the surrogate model to guarantee the accuracy.  

For the reduced order modeling techniques,  

 The reduced order modeling techniques have been used in various fields and most of 

methods are based on the projection and focused on the state variable reduction. 

 Proper orthogonal decomposition (POD) method is prominent for nonlinear problems 

and Krylov subspace methods are popular for linear time-varying (LTV) and linear 

time-invariant problems (LTI).  

 Because the basis construction is crucial for accuracy, many authors proposed 

formula for error estimation. This issue is also related to the reducibility (i.e. how 

much the system can be reduced). 
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 For POD, one issue is to determine the number of sample sets to extract the subspace 

basis. For that, adaptive approaches are proposed (e.g. adaptive POD, POD with 

updates). 

 Reduced order modeling techniques are combined with spectral expansion methods 

(e.g. polynomial chaos expansion, stochastic collocation) for stochastic (parametrized) 

equations to reduce the computational cost.  

As a result of the survey, this dissertation can be located as an extension of the surrogate 

modeling approach with pre-processing of the input parameters to reduce the required cost. 

The surrogate modeling techniques could suffer from the curse of dimensionality and would 

be impractical for large parameter problems. Note that the reviewed surrogate application 

cases in this chapter have less than 20 input parameters. Most of efforts to alleviate it have 

been focused on the efficient sampling strategy (i.e. design of experiment). As shown above, 

the reduced order modeling techniques can be used to reduce the system dimensionality, i.e. 

the number of input parameters or state variables. However, there were (in our best 

knowledge) no explicit attempts to combine the reduced order modeling techniques to 

surrogate modeling approach.  

This dissertation hybridizes the existing surrogate modeling and reduced order modeling 

methods to achieve the accurate and efficient estimation of the response change. Main effort 

is focused on the dimensionality reduction. The motivating works and methods used in this 

dissertation are listed below: 

1. Efficient subspace methods & randomized range finder (reduced order model) 
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2. Multiple-surrogate (multi-metamodeling) methods 

3. Reduced order polynomial chaos expansion method (PCE-ROM & ROM-PCE) 

4. Design of Experiment & surrogate modeling (sampling approach) 

5. Adjoint sensitivity analysis (variational approach) 
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CHAPTER 4. HYBRID REDUCED ORDER MODELING AND 

GOAL-ORIENTED SURROGATE MODELING  

 

As found out in the previous chapter, the current surrogate modeling methods suffer from 

computational cost due to curse of dimensionality. Especially, nuclear reactor physics utilizes 

a very large number of input parameters which has been a severe problem to introduce 

surrogate modeling techniques. To circumvent it, we construct the goal-oriented surrogate 

model instead of reproducing the original model’s entire features. In other words, only 

influential components of the model with respect to purpose of simulations are extracted and 

the surrogate model would be constructed with only those components. To identify those 

components, we utilize the reduced order modeling with subspace methodologies. 

In reduced order modeling (ROM), a vector of interests is recast as a sum of sub-

components: 

 
1 1

n r

i i i i

i i

x q q 
 

   (4.1) 

where n  is the number of elements in a vector x  and r  is the reduced dimension. Note that 

the entries of the vector x  can be input parameters or state variables. If the vector x  is 

defined as state variables, the vector 
iq  can be interpreted as a pattern in state variable 

changes due to variations of input parameters or initial/boundary conditions. On the other 
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hand, if the vector x  is input parameters whose reduction is the main focus of this 

dissertation, the component 
iq  is a sensitive component with respect to the output response 

changes. Then, the scalar value 
i  can be considered as a significance of the component 

iq . 

ROM can be constructed by collecting only influential component, i.e. large 
i . Note that if 

the components 
iq  are known, the vector x  can be represented with 

i  and the number of 
i  

is determined by the number of 
iq . It has been observed that the number of basis vectors is 

smaller than the original dimension, i.e. r n  which means that there are correlations 

between input parameters or state variables.  

The vector x  transformed by ROM cannot be the same with the original one because 

basis vectors with small importance are discarded, which implies that ROM transformation 

inevitably introduces an error for the price of reducing dimensionality. However, a certain 

level of error can be tolerated because there are already numerical errors in computerized 

calculations due to 1) modeling error: mathematical representation of physical phenomena; 

2) discretizing error: converting mathematical function to algebraic equation for 

computerized machines; 3) convergence error: iterative solution for large scale problems. For 

illustration, assume that discretization error is in the order of 410  in relative sense. Then, the 

tighter convergence criteria of iteration solver than 410  would be meaningless because the 

values smaller than 410  are contaminated by discretization error. There is no reason to solve 

the equation very accurately and a little more accurate than the error of discretization scheme 

would be sufficient. In the same sense, one can achieve dimensionality reduction within 
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numerical precision and by properly controlling the error introduced in ROM transformation, 

a significant impact of additional error can be avoided.  

Mathematically, Eq. (4.1) can be considered as basis transformation. Once the basis is 

given, the original vector can be transformed by projection. Therefore, accurate basis 

construction is critical for ROM. Existing ROM techniques are distinguished by methods to 

construct the basis. in this dissertation, we hybridize the existing surrogate modeling and 

reduced order modeling techniques. Reduced order modeling can be constructed at two-

levels: input-level and state-level. As noticed in Chapter 3, the most current reduced order 

modeling techniques are focused on the state variables. In this dissertation, the input-level 

reduction is more emphasized to directly address the difficulty from curse of dimensionality. 

However, the state-level reduction is also briefly explained. The main tool to identify the 

active subspace basis and to estimate the error due to ROM transformation is the subspace 

methodologies. In this chapter, the mathematical derivations and the algorithms for input 

parameter reduction are presented. First, the basic idea and the principles of subspace 

methodologies are presented. Next, the hybrid ROM construction methods are proposed for 

reductions at the state-level, the input-level and the interface between codes. As a collection 

of the methodologies, a general framework for constructing a surrogate model with ROM is 

discussed.  
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4.1 Basis Construction 

Basis (Coordinate) Transformation 

In linear algebra, a basis is a linearly independent spanning set. Given a basis of a vector 

space, every element of a vector space can be expressed uniquely as a finite linear 

combination of basis vectors. For illustration, a three-dimensional example is shown in 

Figure 4-1. A vector X  can be expressed as a linear combination of three basis vectors, i.e. 

1e , 2e  and 3e , with coefficients 1a , 2a  and 3a . It is important to note that the basis vectors 

can be chosen to other set of linearly independent vectors, i.e. orthonormal vectors. The right 

side of the Figure 4-1 shows that the vector X  can be expressed by another set of 

coefficients 1 , 2  and 3  and basis vectors 1q , 2q  and 3q . This idea can be used to extract 

a basis of a subspace and further used in reduced order modeling.  

To demonstrate the reduced order modeling, consider the following example: 

 

 

 

 

1

2

3

4 2 0 2 0

3 0 1 0 1 2 2
2 3

2 1 0 1 0 3 3

5 1 1 1 1

6 2 0 2 0

2 0 1 0 1 3 3
3 2

3 1 0 1 0 2 2

5 1 1 1 1

6

3

3

6

X

X

X

       
       

                            
       
       

       
       

                            
       
       







Q

Q

2 0 2 0

0 1 0 1 3 3
3 3

1 0 1 0 3 3

1 1 1 1

      
       

                           
       
      

Q

 (4.2) 
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As can be seen, the vectors  1
X ,  2

X  and  3
X  can be expressed as linear combinations 

of the two vectors  2 0 1 1
T

 and
 
 0 1 0 1

T
. If those vectors are considered as basis 

vectors, i.e. the columns of the matrix Q , only two coefficients are required to represent the 

vectors  1
X ,  2

X  and  3
X . In other words, once a basis is given, only the coefficients as 

many as the number of basis vectors would be required to represent the vector. Note that in 

this example, the original dimension 
4
 is reduced to 

2
. 

 

 

Figure 4-1. Basis (Coordinate) Transformation 

 

Active Subspace  

Consider a linear operation as following: 

 y x A  (4.3) 

where 
my , nx  and 

m nA . Suppose that x  is the vector of input parameters and 

y  is the vector of state variables, and active subspace can be defined for both.  
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Note that y  can be represented by a sum of columns of A . In linear algebra, this is 

expressed that y  spans the column space of A , i.e. the range of A . If the rank of A  is 

exactly k  (some of columns of A  can be represented with other columns), y  can be 

represented exactly with k  basis vectors. Therefore, the active subspace of y  can be the 

range of A , i.e.  R A .  

If denote the thi  element of y  as iy  and the thi  row of the matrix A as T

iA , then Eq. 

(4.3) can be re-written as: 

 
T

i iy A x  (4.4) 

Note that iy  can be considered as an inner product of 
iA  and x . As explained in Figure 4-2, 

only the component of x  parallel to 
iA  would contribute to iy . This means that in terms of 

iy , we only need to consider x  which is given by projecting the x  onto the direction of 
iA , 

i.e. ˆ /i i iA A A . Therefore, the active subspace of x  is the row space of A , i.e.  R T
A .  

 

 

Figure 4-2. Inner Product and Influential Component 
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In mathematical language, the vector x  can be decomposed as: 

 x x x   (4.5) 

where  R Tx  A  and  Nx A . Note that  R  denotes the range and  N  is the null 

space. By definition, 0x A  which means that the component x  has no contribution to y . 

Thus, we only need to consider x  that is included in the  R T
A , which can be called as 

active subspace. Note that the x  can be calculated by projecting x  onto the active subspace: 

 
Tx x  QQ Q  (4.6) 

where the columns of the matrix Q  are basis vectors of the active subspace, i.e.  R T
A . 

This idea can be extended to the nonlinear surrogate modeling approach. Notice that the 

surrogate models shown in Table 3-1 can be considered as a sum of linear combinations of 

functions. Assuming that an unknown original model is smooth enough to be well-

represented by a surrogate model, the output  response can be approximated by the Tensor-

Free expansion [Abdel-Khalik & Hite (2011)]:  

 

               

           

1 1 1 1 2 2

1 1 2

1 1 2 2 3 3

1 2 3

1 2 2(1) (2) (2)

0

1 , 1

3 3 3(3) (3) (3)

, , 1

                 ....

n n
T T T

i i i i i i

i i i
n

T T T

i i i i i i

i i i

R x R x x x x

x x x

     

     

 



     

    

 


 (4.7) 

where nx  is a vector of n  input parameters which is given by 0x x x  , 0x  is a vector 

of input parameters at reference configuration, x  is a vector of input parameter variations 

from 0x , 
( )

l

k n

i   is a coefficient vector and 
l

k

i  is an arbitrary once-differentiable scalar 
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function depending on an assumed surrogate model form. In a compact form, the above 

expansion becomes: 

 

     
           
1 1

1

0

( ) ( ) ( )

1 ,... ,... 1

                     .. ..
l l k k

l k

n
k k kk T k T k T

i i i i i i

k i i i

R x R x R x

x x x     


 

  

    
 (4.8) 

The tensor-free expansion can be considered as a generalization of existing series 

expansions. According to choosing the spanning sets and functions, i.e. 
 k

i  and 
 k

i , it 

reduces to well-known expansions. For example, in case of  i   , Eq. (4.7) would be 

multi-variate Taylor series expansion and the mathematical proof is presented in Appendix 

A. The important advantage of the tensor-free expansion notation is that one can investigate 

and match the structure of the original model more explicitly, which ultimately enables to 

truncate the expansion according to user-defined error tolerance [Abdel-Khalik, 2011]. Note 

that the scalar functions 
l

k

i  are functions of inner product of a coefficient vector 
( )

l

k

i  and 

input parameter perturbation x . In the same sense with the previous linear mapping case, 

only components of x  parallel to 
( )

l

k

i  would contribute to the response change. The 

subspace formed by the directions  ( )

l

k

i  would be the active subspace [Bang et al., 2012].  

 

Basis Construction with Random Samples 

The basis construction of the active subspace is the key for the projection-based reduced 

order modeling. In this dissertation, the randomized algorithm is employed. It is based on the 

assumption that the probability to generate the same random vectors would be negligibly 
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small [Abdel-Khalik, 2004]. Therefore, the randomly generate vectors 
 1

x , …, 
 r

x  would be 

independent and 
 1

xG , 
 2

xG , …, 
 r

xG  are also independent, where G  is the orthogonal 

projector onto a pre-defined subspace spanned by basis vectors numbering r s . This means 

that each randomly generated vector 
 i

xG  for 1,...,i r  contains information about the pre-

defined subspace. Clearly, when r s , the vectors 
 1

xG , 
 2

xG , …, 
 r

xG  span the entire 

subspace Y ; therefore, the projection of more randomly generated vectors will not be 

linearly independent and will not have any more information about the pre-defined subspace.  

The above idea can be used to construct the active subspace basis. First, consider the 

active subspace of y  which is linear case. The y  in the Eq. (4.3) can considered as a linear 

combination of the column vectors of the matrix A , which span the active subspace. It is 

straightforward to extract the active subspace from y  because y  itself is in the active 

subspace and each randomly generated y  has information about the active subspace. 

Therefore, the orthonormal basis of the active subspace can be constructed simply by 

orthonormalizing y  vectors [Golub & Van Loan, 1996]. It is obvious that this procedure 

would be applicable to nonlinear cases because only thing needs to do is examine the random 

samples of y  to identify the patterns in y .   

For an illustration, two-dimensional case is shown in Figure 4-3. Consider that the 

subspace which we want to find is spanned by two vectors, i.e. 1A  and 2A . Let the first 

sample point as 
 1

y  which is calculated with perturbed input parameters. Then, the first basis 

vector can be given as: 
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 

 

1

1 1

2

y
q

y
  (4.9) 

Let the second sample point as 
 2

y . The component orthogonal to the first basis vector 

can be calculated by: 

      2 2

1 1- Ty q q y

 I  (4.10) 

where I  is the identity matrix. Then, the second orthonormal basis vector can be constructed 

by normalizing the 
 2

y


. As can be seen in Figure 4-3, the two orthonormal basis vectors, 

i.e.  1 2,A A  and  1 2,q q , span the same subspace. This illustrates that we can identify the 

orthonormal basis by examining the samples. This idea can be easily extended to higher 

dimensional cases.  

 

2q
1q

 2
y

 1
y

 2
y



1A

2A

 

Figure 4-3. Illustration of Orthonormal Basis Construction 
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Constructing the active subspace of input parameters is not straightforward like state 

variables’ and the main contribution of this dissertation is devoted to this part. Consider the 

linear model first as in Eq. (4.3). Remind that the active subspace of input parameters x  is 

the row space of A , i.e.  R T
A  which is not directly accessible. If the full matrix A  is 

available, the orthonormal basis of  R T
A  can be calculated by singular value 

decomposition. In this dissertation, we assume that the mapping with transpose of A  be 

available due to popularity of adjoint sensitivity analysis in reactor physics codes [Cacuci 

(2003)]: 

 Tz w A  (4.11) 

Then, the random samples of z  spans the column space of 
T

A  which is the same with row 

space of A . Once the orthonormal basis of  R T
A  is constructed to Q , the input 

parameters can be recast by projecting onto that subspace as 
T w = QQ  and this 

transformation should not change in z .  

For nonlinear case, the active subspace can be found via the first order derivative of the 

response [Bang et al., 2012]. As shown in the previous section, the orthonormal basis we 

seek spans the same subspace formed by the coefficients vectors. Note that the first order 

derivative of Eq. (4.7) is given as: 

              
1 1

1

'( ) ( ) ( ) ( )

1 ,... ... 1

.. ..
l l k k l

l k

n
k k kk T k T k T k

i i i i i i i

k i i i

R x x x x      


 

       (4.12) 
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Each term of this summation represents a vector in the parameters space pointed by the 

  
l

k

i  vectors. Accordingly, the gradient of the response function  R x  may be viewed as 

a linear combination of all the 
  
l

k

i  vectors, which means the first order derivatives at 

random points spans the range of active subspace [Abdel-Khalik, 2004]. In the same sense 

with before, orthonormal basis can be constructed by orthonormalizing the first order 

derivatives at the random points. The premise is that all parameter variations that are 

orthogonal to the active subspace produce negligible response change.  

The above idea of the basis construction can be extended to the multi-responses cases by 

defining the following pseudo response [Bang & Abdel-Khalik, 2011a]: 

 
1

m

pseudo i i

i

R R w


  (4.13) 

where iR  is a thi  response and iw  is an arbitrary number for 1,...,i m . Note that the 

gradient of the pseudo response would still be random linear combinations of all responses’ 

coefficients vectors. 

The ideas for the basis construction are combined into one algorithm: Range Finding 

Algorithm (RFA).  

Step 1) Pick the k  random input vectors: 
 i

x   for 1,...,i k  

Step 2) Calculate the random samples: 

   - if state-level reduction,  
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      calculate the state variables with random inputs: 
    i i

y f x  for 1,...,i k  

   - if input-level reduction,  

      calculate the gradient of random pseudo-responses: 
 i

pseudo

x

y

x




 for 1,...,i k  

Step 3) Construct the orthonormal basis by orthonormalizing the samples: 

   - if state-level reduction,      1

1

k

kspan q q span y y 
 

 

   - if input-level reduction,  
   1

1
k

pseudo pseudo

k

x x

y y
span q q span

x x

  
  

   

 

Step 4) Check the basis 

   - if k  is not sufficient, then increase k  and repeat from Step 1) 

   - otherwise, the active subspace basis is  1 kq qQ  

 

It is noteworthy to mention that the idea for finding matrix structure only using random 

matrix-vector products was first proposed by Abdel-Khalik (2004). However, at the time, 

only numerical experiments were employed to decide on an acceptable rank for the matrix, 

which is often acceptable from an engineering/practical viewpoint. Recently, the above 

algorithm developed in the applied mathematics community employing the basic idea of 

using random matrix-vector products, has been shown to provide an upper-bound on the error 

resulting from the randomized range identification [Liberty et al., 2007, Halko et al., 2011]. 
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4.2 Projection based Reduced Order Modeling 

Once the orthonormal basis is available, the reduced order model can be constructed by 

projecting the model onto the active subspace.  

 

State Level Reduction 

Consider an unsteady nonlinear partial differential equation for a state function  ,x t  

with n  input parameters represented by a vector p : 

 
 

      
,

, , ,
x t

L p x t F p x t
t


 


 


 (4.14) 

where L  denotes a linear spatial differential operator and F  is a nonlinear function of a 

scalar variable. By discretization, a system of nonlinear ordinary differential equations can be 

given by: 

       
d

t t t
dt
   A F  (4.15) 

where  0,t T  denotes time,      1

T m

mt t t      , 
m nA  is a discrete 

approximation matrix of the operator L , F  is a nonlinear function evaluated at  t , i.e., 

     1

T

mF t F t    F  with appropriate initial conditions and boundary conditions. 

Let the m r
 VV  be a matrix whose orthonormal columns are the vectors in the reduced 

basis. Then, the  t  can be projected onto the basis by: 

    T

rt t VV V  (4.16) 
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where 
r

r  V . Substitute Eq. (4.16) to Eq.(4.15), then the reduced-order system can be 

obtained by: 

       T

r r r r

d
t t t

dt
   A V F V  (4.17) 

where 
r rT

r


  V VA V AV  is an approximation of the matrix A .  

 

Input Level Reduction 

Assume that a state function is mildly nonlinear with respect to the input parameter 

variations so it can be expanded using a tensor-free infinite series expansion as follows (to 

simplify the expressions, the spatial and the temporal notations are omitted): 

 

                
              

1 1 1 1 2 2

1 1 2

1 1 2 2 3 3

1 2 3

1 1 2 2 2 2

1 , 1

3 3 3 3 3 3

, , 1

           +

n n
T T T

i i i i i i

i i i
n

T T T

i i i i i i

i i i

p p p p

p p p

      

     

 



 



 


 (4.18) 

where i  can be any kind of scalar function. In a compact form, the above expansion 

becomes: 

                 
1 1

11 ,.., ,.., 1
l l k k

l k

n
k k T k k T k k T

i i i i i i

k i i i

p p p p      


 

   (4.19) 

If the basis Z  is given such that 

 
1

r

i i

i

p z 


 
Z

Z  (4.20) 
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where 
1

n r

rz z
   

Z

Z
Z  and 

1

T

r     Z
, the system of equation can be re-

defined as: 

 

                  
              

1 1

1

1 1

1

1 ,.., ,.., 1

1 ,.., ,.., 1

ˆ

ˆ ˆ ˆ                    

l l k k

l k

l l k k

l k

n
k k T k k T k k TT T T

i i i i i i

k i i i
n

k k T k k T k k T

i i i i i i

k i i i

p p p p        

        



 


 





 

 

ZZ ZZ ZZ

(4.21) 

where 
   ˆ k k rT

i i   ZZ .  

In view of surrogate modeling, one can consider the Eq. (4.21) as an approximate model 

to be constructed with the unknowns 
 k n

i  . Note that if Eq. (4.19) is reduced to Eq. 

(4.21), the unknown coefficients are also reduced to 
 ˆ k r

i  Z . It implies that the smaller 

number of simulations would be required and, opposed to the curse of dimensionality, one 

can save significant amount of computational cost. 

To identify the influential basis of the inputs, consider the first order derivative of Eq. 

(4.19) given as: 

       
 

         

1 1

11 ,.., ,.., 1

l

l k k l

l k

k
n

ik k T k T k k T k

i i i i i i

k i i i

p p p p
p


      



 


 


   (4.22) 

Note that each term of this summation represents a vector in the input parameter space 

pointed by the 
  
l

k

i  vectors. Accordingly, the gradient of the function  p  may be 

viewed as a linear combination of all the 
  
l

k

i  vectors. Given that any subspace could be 

described by an infinite number of the basis, one can find a basis by sampling gradient 

information in Eq. (4.22) at random points in the input parameter space, where each sample 
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represents a new vector from the input parameter subspace. The above idea can be extended 

to the case of multiple state variables by defining the following pseudo variable: 

 
1

m

pseudo i i

i

w 


  (4.23) 

where i  is a thi  state variable (or response) and iw  is an arbitrary number for 1,...,i m . 

Note that each i  can be represented as in Eq. (4.19) and the gradient of the pseudo variable 

would still be a random linear combination of all state variables’ (or responses’) coefficient 

vectors.  

It is important to note that the proposed input-level reduced order modeling approach 

utilizes only the first order derivatives which are recognized as local information to capture 

the higher order effects which are related to global behavior. Therefore, this implies that it 

could be applied not only to the uncertainty quantification, but also to the problems, e.g. 

design optimization in which the input parameter variations could be large. 

The construction of the active subspace requires the first order derivative information of 

the response. This can be done via adjoint sensitivity analysis. In the nuclear engineering 

community, since Wigner (1945) introduced perturbation theory into reactor physics, the 

sensitivity analysis has been extended under the name of generalized perturbation theory to 

the analysis of reactivities and reaction-rates which are linear or bilinear functionals of the 

forward and/or adjoint fluxes [Stacey (1974), Williams (1986), Cacuci (2003)]. Using first 

order generalized perturbation theory, one can calculate the first order derivatives for a given 
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response with respect to all parameters using only one forward and one adjoint mode 

executions.  

 

4.3 Intersection Subspace Basis Construction 

In multi-physics problems, the further reduction can be achieved by considering the 

active subspace of all multiple physical models [Bang & Abdel-Khalik (2012e)]. Assume that 

we have Model A  and Model B  whereby outputs of Model A  are passed as inputs to 

Model B  and consider the construction of the surrogate model for Model B : 

      Model A :  f x y
A , where mx , 

ny  

      Model B :  f y z
B , where 

ny , 
lz  

Note that the outputs of Model A  can be reduced by identifying a subspace determined 

solely by Model A , using the snapshots algorithms described earlier: 

 
Ty y 

A A A
Q Q Q , where 

n r
 A

A
Q , r A  (4.24) 

This  means that the reduced output of Model A  will be confined to the active subspace 

spanned by the column vectors of the matrix A
Q , implying that Model B will not see any 

components that are orthogonal to the active subspace generated by Model A. Therefore, by a 

simple transformation, the inputs to model B are now effectively reduced to r
A  components 

only. Note that, at this point, Model B has not been utilized yet.  

Now, considering Model B  and for now independently of the reduction rendered by 

Model A , the vector y  represents the inputs to Model B  and therefore can be reduced using 
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an ROM algorithm by sampling the derivatives of the outputs of Model B  with respect to its 

inputs, as mentioned earlier: 

 
Ty y 

B B B
Q Q Q ,   where 

n r
 B

B
Q , 

r  B  (4.25) 

This means that the components of y belonging to the active subspace spanned by the 

column vectors of B
Q  are the most influential to the outputs of Model B . The implication is 

that one need not consider the impact of all y  components that are orthogonal to the active 

subspace as determined solely by Model B . 

Now, in general, one would not expect the active subspace represented by A
Q  to be the 

same as the B
Q  subspace. In other words, the components of the active subspace belonging 

to the A
Q  subspace which are also orthogonal to the B

Q  subspace will not be influential to 

the overall output of the combined model, therefore these components should be discarded, 

leading to further reduction of the active subspace at the interface between the two models. If 

the two subspaces determined by Model A  and B  happen to be exactly the same, an 

unlikely situation, then one would not be able to render any further reduction.  

Mathematically, this situation may be described as follows: among the r
A  components of y  

determined from Model A , only the components spanned by B
Q  subspace can contribute to 

the output response of Model B .  Therefore, we can define the matrix 
n rQ  whose range 

spans the common components (i.e. the intersection between the two subspace) in the A
Q  

and B
Q  subspaces. It is natural to expect that the size of the intersection subspace to be 

smaller than the minimum of the two model-specific subspaces, i.e., 
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  min ,r r r
A B  (4.26) 

If r  is smaller than either values, one could further reduce the input parameters for 

Model B ; thereby leading to a more efficient construction of the surrogate model.  

 The intersection algorithm is summarized below in two steps. Step 1 is a standard 

snapshots reduced order modeling algorithm applied to Model A . In Step 2, the derivatives 

of Model B ’s outputs are employed to construct an active subspace for its input parameters. 

The two subspaces are combined using a projection technique which filters out all the 

components that lie outside the intersection subspace. Once determined, the ROMs for both 

Model A  and Model B  can be constructed. Note that the inputs of Model B  which is also 

the outputs of Model A  can be transformed by:  

 
Ty y y QQ Q ,    where 

n rQ  (4.27) 

 

Algorithm: Intersection Subspace Construction  

Step 1) Construct the active subspace for Model A  

   Generate the random inputs 
   1 k

x x 
 

 

   Compute the outputs 
   1 k

y y 
 

Y  

   Determine the rank r
A  using a range finding algorithm 

   Calculate QR decomposition of 
A A

Y Q R  

Step 2) Construct the intersection subspace: 

   Generate random inputs 
   1 k

y y 
 

 

   Calculate derivatives of pseudo responses of Model B  
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 

 

 

 

1

1

k

pseudo pseudo

k

z z

y y

  
  

   

D   

                 where       j j j

pseudo i i

i

z z  

   Project onto the basis of Model A  

             
T

A A
U Q Q D  

   Using a range finding algorithm, determine the rank r  

   Calculate QR decomposition of U QR  

        

 

4.4 General Framework for Surrogate Modeling with Reduced 

Order Transformation 

The general framework for surrogate modeling with reduced order modeling methods is 

depicted in Figure 4-4. One can notice that, compared to the surrogate modeling framework 

in Figure 3-1, the Step 2 and the Step 3 are added due to incorporation of the reduced order 

approximation. Step 4 – 6 are the same as described in the Chapter 3.  

Note that, for surrogate modeling with ROM, there are two possible error sources to be 

considered; reduced order modeling and surrogate modeling. In the reduced order step, the 

error may be introduced by insufficient basis vectors, i.e. the variations of the input 

parameters are not fully captured. There are three ways to estimate the error due to ROM 

transformation and determine the size of the active subspace basis: singular value spectrum, 

portion of in-active subspace component and  -metric.  
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The singular value decomposition [Golub & Van Loan (1996)] of a matrix 
n nA  is 

given by: 

 
1 1

n r
T T

i i i i i i

i i

u v u v 
 

   A UΣV  (4.28) 

where iu  and iv  are the orthonormal vectors. Thus, the i  can be considered as the 

importance of the subspace spanned by iu  and iv . As can be seen in Eq. (4.28), by 

considering only components with large importance, one can construct the low-rank 

approximation of the matrix A . Same idea can be used to determine the number of basis by 

examining the singular value spectrum of the matrix of which columns are sample vectors: 

     for linear case, 
   1 r

y y 
 

Y  where 
   i iTy x A ,  

     for nonlinear case, 
   1 r

pseudo pseudo

x x

R R

x x

  
  

   

G  where 
1

m

pseudo i i

i

R R w


 . 

The components associated with small singular values have small impacts on the basis 

representation and may be contaminated by the numerical errors. Because of no additional 

code execution, this method may be the easiest and straightforward way to determine the 

number of basis vectors.  

Second, we can explicitly compare the original vector and the transformed vector and 

examine the portion of discarded components, i.e. in-active component. This can be done by: 

  Tx x  I QQ  (4.29) 
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where x  is the component discarded in ROM transformation process. Especially for state 

variable reduction, this approach can be easy to use because x  can be interpreted directly as 

error. However, the error estimation by Eq. (4.29) requires additional samples.  

Note that the above two methods can be used to determine the number of basis vectors in 

terms of the active subspace basis construction. Note that for input parameters, it may be 

difficult to connect x  to error in output responses. Because the reduction is performed on 

the input parameters and an original model is assumed to unknown, there is no way to relate 

the transformed input parameters directly to the output responses which is what we actually 

need to calculate. Only way to estimate the error introduced to the responses may be a 

statistical method by utilizing the additional samples as test sets. For rigorous validation of 

the basis vectors in view of the output responses,  -metric can be used to measure the error 

in responses (or states) introduced by transforming the input parameters [Kennedy et al., 

2011]: 

 
       0 0    for 1,...,
i i

R x x R x i N      (4.30) 

where  0R x  is a response value at the reference configuration,    0

i
R x x  is a response 

value with input parameters perturbed orthogonal to the subspace spanned by the basis 

vectors, i.e.  Tx x   I QQ , N  is the number of test samples, I  is the identity matrix 

and the columns of the matrix Q  is the basis vectors. Note that if the basis vectors which 

spans the influential subspace are constructed properly, the  -metric should be very small, 

i.e. the input parameter perturbations orthogonal to the influential subspace would not 
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contribute to the response change. The  -metric characterizes the effect of the components 

that are considered non-influential, i.e. the components that are not represented in reduced 

order transformation.   

Once the basis vectors Q  for the influential subspace are obtained, the input parameters 

can be transformed into low dimension by projection. Then, a surrogate model can be 

constructed by examining the relationship between the dimensionally reduced input 

parameters and the responses. The training sample sets are required in this step. Note that due 

to reduced order transformation, the required number of training sample sets would be 

reduced. In this surrogate modeling step, an additional error may be introduced. As noted in 

the literature review, the analytical estimation of the error due to surrogate approximation is 

not available because the original model is not known as a priori. Though the original model 

is known, a functional form of a surrogate model may be different from the original one so 

that the analytical relationship between the original model and the surrogate model cannot be 

derived and analytical error estimation would not be available. Therefore, statistical methods 

employing test sample sets, e.g. split samples, cross-validation and bootstrapping, may be the 

only way to estimate the error introduced by the surrogate approximation. Note that it is 

difficult to separate the error due to the reduced order modeling and the surrogate modeling 

because this procedure is sequential so that both error sources are combined in the ultimate 

response estimation. In practice, it is recommended that the test sample sets are generated in 

the Step 1 and reuse them for subsequent validations in Step 6. The main error estimation is 

conducted on the predictions of the surrogate model and considered as convergence criteria 
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for determining the required number of basis vectors, i.e. the Steps 2 – 5 are repeated until 

the error estimated by the test sample sets is small enough to satisfy the user-defined 

tolerance of the response estimation. The  -metric for the Step 3 can be considered as a 

supplementary tool.  

 

Step 1: Preliminary Experiment 

Determine the variables to be considered

Step 4: Design of Experiment

1) Determine the sampling strategy

2) Generate the observations

Step 5: Surrogate Model Construction

1) Determine a surrogate model type

2) Build a model by the observations

Step 6: Validation

1) Determine the surrogate model accuracy

2) Add new design(s) if needed

Step 2: Reduced Order Modeling

1) Orthonormal Basis Construction by RFA

2) Transform the Input Parameters into Reduced Dimension

Step 3: Validation of Reduced Order Modeling

1) Determine the Reduced Order Model Accuracy

2) Add more basis vector(s) if needed

 

Figure 4-4. General Framework of Reduced Order Surrogate Model Construction 
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CHAPTER 5. REDUCED ORDER INITIAL CONDITION 

PERTURBATION THEORY 

 

In subsequent chapters (Chapter 5 ~ Chapter 9), the proposed methods are implemented 

for reactor physics calculations to examine the feasibility and the applicability. As a first 

example, the state-level reduced order modeling is incorporated into the traditional initial 

condition perturbation theory in this Chapter. Taking advantage of the state-level reduced 

order transformation, the adjoint system of equations to be solved would be reduced so one 

can connect the initial condition variations to state variable changes with reduced 

computational cost. This work has been published in Transport Theory and Statistical 

Physics [Bang et al. (2012b)]. 

 

5.1 Problem Description 

Consider the spatially and temporally discretized form of a non-homogeneous partial 

differential equation representing a dynamical system:  

 
     

   

1 ,     0,1,...., 1

         ,     0,1,.....,  

t t t t T

R t t t T

 



   

 

A

C
 (5.1) 
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with a given initial condition   00  , where   nt   and   mR t   denote state and 

responses at time step t , respectively. The   n nt A  and m nC  are coefficient matrices. 

In reactor physics, Eq. (5.1) can be used to describe the time-dependent diffusion equation. 

By defining the system of equations: 

 

 

 

 

 

 

0 0 0

1 0 0
0

0 2 0
,  and 

0

0

0 0 1 0

s s s

T

T





   
   
     
     

       
     

    
   

     

I I

A I

A I
A F

I

A I

  (5.2) 

where 
n nI  identity matrix and nT nT

s

A , nT n

s

F , and 1nT

s

 , we can get: 

 
0

  





A F

C

s s s

s s sR




 (5.3) 

where m nT

s

C  is a coefficient matrix for calculating responses and 1m

s

R  is a vector 

of responses. This is a compact representation for a dynamical system with n  initial 

conditions given by the elements of the 
0  vector.  

One may need to calculate the change of the response s
R  due to the variations of the 

initial condition 0 . The simplest way is to re-solve Eq. (5.3), i.e. calculate the state variables 

with perturbed initial condition and compute the responses again. However, if Eq. (5.3) 

requires a lot of computation time or storages, re-solving may be not a preferred choice. 

Instead, the initial condition perturbation theory can be used to predict the response change. 

If one can solve the adjoint equation defined by: 
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*T TA C

s s s
  (5.4) 

Then, the initial condition variation can be directly connected to the response change by 

taking advantages of the adjoint property: 

      * * *

0

T T T
T         C A A F

s s s s s s s s s s s
R        (5.5) 

This means that once the adjoint system of equations given in Eq. (5.4) is solved at the 

reference configuration, the response changes can be accurately predicted without solving 

any more equations. Note that in this initial condition perturbation theory, the adjoint 

equation defined in Eq. (5.4) should be solved as many as the number of responses, i.e. m  

times. Therefore, if the number of response is large, its applicability would be limited.   

Another approach has been proposed by Bashir et al. (2008). In their one-shot Hessian-

based approach, the state  t  is considered as a linear combination of basis vectors:  

    T

r t t  V  (5.6) 

where n rV  contains r  orthonormal basis vectors as columns. The ROM discrete 

dynamic system can be derived by projection of Eq. (5.1) onto the subspace spanned by the 

basis V  as:   

 
     

   

1 ,     0,1,...., 1

         ,     0,1,.....,  

r r

r r

t t t t T

R t t t T

 



   

 

A

C
 (5.7) 

where 
T r r A V AV  and 

m r C CV . By defining the system of equations: 
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 

 

 

0 0 0

1 0

0 2

0

0

0 0 1

r

T

 
 

 
 

  
 
 
 

   

V

A V

A V
A

V

A V

, 

0

0

0

T

r

 
 
 
 

  
 
 
 
  

V

F ,            

 

 

 

0 0 0

0 0
0

0 0
 and 

0

0

0 0 0

T

r r

T T





 
 
   
   

    
   

  
 
  

C

C
V

C
C

V
C

C

  (5.8) 

one can get more compact form,:  

 
0

  





A F

C

r r r

r r r
R




 (5.9) 

Now the problem can be simplified to find the appropriate basis n rV  where r n  

such that the error between the original model’s responses 
s

R  and the reduced model 

responses 
r

R  is minimized for all initial conditions of interest. This is done by solving an 

associated optimization problem of the form: 

    
0 0

*

0 arg max - -
 





T

s r s r
R R R R  (5.10) 

where the initial condition *

0  are chosen to maximize the error between the original and the 

reduced order model responses via a greedy sampling algorithm. Eq. (5.10) can be re-written 

as: 



www.manaraa.com

 

82 

 
0 0

*

0 0 0arg max T e

 
  


 H  (5.11) 

where    1 1 1 1
T

e

s s s r r r s s s r r r

     H C A F C A F C A F C A F , and rA , rC  and rF  are coefficient 

matrices for the reduced model. Consider that a initial condition vector can be decomposed 

as: 

 0 0 0      (5.12) 

where 
0  is the component of 

0  in the subspace of current basis and 
0
  is the orthogonal 

complement of 
0 . By assuming that:  

 
1 1

0 0s s s r r r  C A F C A F  (5.13) 

Eq. (5.11) can be simplified to: 

    
0 0

*

0 0 0arg max
T

 
   


 H  (5.14) 

where    1 1
T

s s s s s s

 H C A F C A F . By considering initial conditions of unit norm, the solution 

*

0  is equivalent to maximizing the Rayleigh quotient of the form: 

 
   

   0 0

0 0*

0

0 0

arg max

T

T
 

 


 

 

  


H
 (5.15) 

The solution of this maximization problem is the eigenvector corresponding to the largest 

eigenvalue of H , which also solves the optimization problem in Eq. (5.14). This process 

could be repeated to find the remaining dominant eigenvectors. This one-shot Hessian-based 

approach is basically constructing a reduced order model and solving the system of equations 

with different initial conditions with reduced cost. Note that because the reduced order model 
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is constructed with respect to pre-defined responses (which can be called Goal-oriented 

reduced order modeling), in case that the other responses which is not considered in reduced 

order modeling are to be calculated, the whole process should be repeated.  

 

5.2 Proposed Method 

We would like to devise the method for a large number of responses and for general 

responses, i.e. not pre-defined in the reduced order modeling stage. For that, our reduced 

order model is constructed on the state level. Therefore, any response can be calculated with 

predicted state variables. In our state-based approach, 
s  in Eq. (5.3) is considered as a linear 

combination of basis vectors:  

 
1

r
T

s i s

i

q


 QQ   (5.16) 

where 
nT rQ  contains r  orthonormal basis vectors as columns. The range finding 

algorithm (RFA) explained in the previous chapter can be used to identify the active subspace 

of the state variables with respect to initial condition variations, in which the initial 

conditions are randomly perturbed within their permitted ranges, and the forward model is 

executed. The variations in s  are recorded and the process is repeated until the reduced 

subspace is identified via RFA. Note that the number of basis vectors is determined by the 

initial condition variations not by the coefficient matrix sA  which has larger size of 

dimension. That means that even though the dimension of the entire state vector s  is nT , 
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the rank of the subspace cannot be larger than n  which is the dimension of the initial 

condition vector. If there is a correlation in initial values, then the rank of the subspace must 

be less than n .  

We denote the subspace spanned by the columns of the converged Q  matrix as the active 

state subspace. The inactive subspace refers to the orthogonal complement subspace. In a 

similar manner, the columns of another matrix 
Q  are assumed to form a basis for the 

inactive state subspace. Since the two subspaces are orthogonally complementary to each 

other then:  

    R R  and nT nT T T

nT nT

   

   Q Q QQ Q Q I  (5.17) 

The above identity could be used to express the change in the response due to a general 

initial condition change as follows: 

  T T

s s s sR       C C QQ Q Q   (5.18) 

Since all possible variations x  are assumed to belong to the active state subspace, the 

term 
T

s

  Q Q   is equal to zero (within the precision of the calculations). The above 

equation could therefore be re-written as: 

 
T

s sR  C QQ   (5.19) 

Note again that the rank of the matrix 
T

sC QQ  could not be greater than r . This implies 

that in case of multi-response, especially, the number of the responses are larger than the 

number of the initial condition values, the responses may be correlated, and their variations 

will belong to a subspace of dimension r , given by the range  R T

sC QQ . This subspace is 
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denoted as the active response subspace. Secondly, the above system of equations could be 

represented by r  independent linear equations as follows:  

 ˆ ,   for 1,...,j j T

s i i sR q q i r   C   (5.20) 

where ˆ jR  represents the j th component of the response variation vector jR  along the 

active response subspace and 
j

sC  is the j th row of sC .  

To evaluate the change in the response without calculating the changes in the state vector, 

the adjoint approach is employed. Given that the active subspace has a dimension r , the 

adjoint model is executed r  times as follows: 

 ,   for 1,...,T

s i iz q i r A  (5.21) 

The corresponding changes in responses (as projected on the active response subspace) 

could then be calculated from: 
0

j j T

s j jR q z   C . The active components could then be 

mapped back to the original response space. Note that in this development, the right hand 

side for the adjoint equations depends only on the flux variations rather than on the response. 

This represents a major difference to existing adjoint methods, where the solution of the 

adjoint model is dependent on the given response of interest. If one is interested in 

calculating another response, the same solution of the r  adjoint functions could be used to 

calculate the corresponding change in the new responses, whereas in existing adjoint 

methods, the adjoint models must be re-solved. We therefore distinguish this approach from 

existing adjoint methods by denoting this method by the state-based adjoint, where the 

adjoints are only dependent on the state variations rather than on the responses. 
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State-Based Adjoint Initial Condition Perturbation Theory : 

1. Randomly generate 0  by 0r  times, denote by:   0

0 1

r
i

i



  

2. Calculate   0

1

r
i

s i
  and build 01 0 0]

r

s s s s W = [     

3. Decompose T
W = QΣV  using SVD decomposition, where 0nT r

Q , 

0 0r r
V , and 0 0r r

Σ  

4. Determine the rank r , and re-iterate Step 1-3 if necessary.  

5. Solve 
T

s i iz qA  for 1,...,i r  

6. Calculate 1 0...
T

T T

s rR z z     C Q   

 

5.3 Numerical Test 

The three linear time-invariant (LTI) cases which are based on one-dimensional diffusion 

models are presented here. The basic data for model configurations are adopted from 

Mckinley (2000, 2002) and modified for the purpose of this study. The objective of these 

studies is to compare the sb-ROM (state-based adjoint ROM approach) and the go-ROM 

(goal-oriented Hessian-based one-shot ROM approach) with regard to their associated 

computational cost and accuracy of their reduced order model predictions. The first case 

employs a time-independent A  matrix with an external neutron source term and emulates a 

single assembly model; and the second and third cases employ a time-dependent ( )tA  matrix 

to emulate a multi-assembly model. In the go-ROM implementation, the Hessian matrix H  

is explicitly formed using n forward model executions.  
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For the sake of comparison, a discrepancy metric is calculated for each ROM model. The 

metric measures in a root-mean-square sense the discrepancy between the actual responses 

(evaluated with direct perturbations of the forward model) and ROM model estimate defined 

as: 

 

2

1 actual estimate

actual

R R
discrepancy

m T R




 
 (5.22) 

where m  denotes the number of responses at each time step and T  is the number of time 

steps. This metric is calculated for both sb-ROM and go-ROM approaches. Two cases are 

considered; the first case involves only one response representing the flux at the center 

location and the second case represents the responses at locations near the center.  

 

5.3.1. Case Study No. 1 

The first case employs a heterogeneous model that emulates some of the basic details of a 

fuel assembly, and employs an external source term: 

 
 

 
 

        
, ,1

,f a ext

x t x t
D x x x x t S x

v t x x

 
 

 
    

  
 (5.23) 

The material layout is shown in Figure 5-1 and material data (reaction cross sections) is 

listed in the Table 5-1. Through discretization, the system of equations can be constructed as 

in Eq. (5.3) with 1000 1000

s

A , 1000 1

s

 , 1000 20

s

F , and 20 1

0
 . As initial 

conditions, use: 
0 1  . Table 5-2 summarizes the computational overheads for both the go-

ROM and sb-ROM approaches, where m is the number of model’s responses, n  is the 
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number of state dimensions, s  is the extra samples to determine the size of the active 

subspace via the range finding algorithm (in this study, 10s  ) and r is the size of the active 

subspace for the sb-ROM approach or the truncated rank for the go-ROM approach. The 

results of this study are shown in Table 5-3.  

 

Fuel 1 Fuel 2 WaterJ=0 J=0

a a b

a=3.231

b=1.158  

Figure 5-1. Layout for Case Study No. 1 

 

Table 5-1. Specifications for Case Study No. 1 

Material D  [ cm ]
 a  

[ 1cm ] f
 
[ 1cm ] v  [m/s] Source [#/sec] 

Fuel 1 

Fuel 2 

Water 

1.2069  

1.2069 

9.6618 

0.0284  

0.0252  

0  

0.0416  

 

0.034  

0  

2200   

2200  

2200  

251.0 10  
251.0 10  

0 

 

 

Table 5-2. Comparison Between the go-ROM and sb-ROM approaches 

 go-ROM sb-ROM 

Step 1 
Construction of Hessian Matrix Construction of Active Subspace 

n forward or m adjoints r+s forward 

Step 2 
Construction of ROM model Construction of ROM model 

r adjoints r adjoints 
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Table 5-3. Results for Case Study No. 1 

Response  

( m ) 
Approach 

System  

Size 

No. Basis  

( r ) 
Discrepancy 

Major  

Computation 

Step 1 Step 2 

1 

sb-ROM 1000x1000 20 7.9248e-017 30 20 

go-ROM 

250x250 5 1.7157e-004 1 5 

500x500 10 4.5114e-008 1 10 

750x750 15 1.5967e-008 1 15 

1000x1000 20 1.1861e-016 1 20 

3 

sb-ROM 1000x1000 20 7.2051e-017 30 20 

go-ROM 

250x250 5 0.0045 3 5 

500x500 10 0.0017 3 10 

750x750 15 0.0099 3 15 

1000x1000 20 2.1561e-016 3 20 

 

The information in Table 5-3 may be described as follows: the first column refers to the 

number of responses employed to construct the go-ROM model. The third column describes 

the size of the various problems analyzed, each corresponding to a different refinement of the 

mesh. The fourth column determines the size of the active subspace. The size of the active 

subspace for the sb-ROM approach is based on machine precision tolerance, while for the 

go-ROM approach, different ranks for the Hessian matrix are assumed which sets the size of 

the reduced model. The fifth column calculates the discrepancies according to Eq. (5.22). The 

final columns shows the computational effort (the number of simulations in forward or 

adjoint mode) for each of the two steps required for the construction of both the sb-ROM and 

go-ROM approaches as described in Table 5-2. With r=20, both go-ROM and sb-ROM 

approaches have similar accuracy. The sb-ROM expends 10 extra oversamples to verify the 

accuracy of the active subspace.  
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For the case of m=3, the go-ROM model is constructed based on three responses at the 

center of the model at the last time step. Notice that as the rank of the Hessian is reduced 

below 20, the accuracy is degraded more than the single response case (m=1). The sb-ROM 

approach however always determines a subspace of r=20, implying that one cannot find a 

subspace of smaller dimension to accurately capture all response variations. This behavior is 

expected because the sb-ROM optimizes the selection of the active subspace over all 

responses, and hence the size of its active subspace must always be bigger than the go-ROM 

approach.  

 

5.3.2. Case Study No. 2  

This case study emulates a multi-assembly model, and also simulates depletion of fuel 

materials. This is done by changing the cross-sections exponentially through time. Consider 

the time-dependent one-group diffusion equation with time-varying coefficients: 

 
 

 
 

      
, ,

,t t

f a

x t x t
D x e x x e x t

t x x

  
 

 
   

  
 (5.24) 

The model layout and specifications are shown in Figure 5-2 and Table 5-4. Through 

discretization, the system of equations is constructed such that: 2800 2800

s

A , 2800 1

s

 , 

2800 140

s

F , and 140 1

0
 . As initial conditions, use 

0 1  . The maximum system size of 

2800 was used as a reference for the accuracy for both the sb-ROM and go-ROM approaches. 
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a=1.158, b=3.231

II I H2O

b b a

IIIH2O

bba

II

(G)
I H2O

b b a

II 

(G)
IH2O

bba

21 21 21 1

0 cm 106.68 cm

Type 1 Fuel Assembly Type 2 Fuel Assembly

J=0 J=0

 
Figure 5-2. Layout for Case Study No. 2 

 

Table 5-4. Specifications for Case Study No. 2 

 
Type 1 Fuel Assembly Type 2 Fuel Assembly 

Water Region I Region II Water Region I Region II 

 D cm  1.41  1.21   1.22   1.47   1.26   1.30  

1

a cm     0.00230  0.0252   0.0284  0.00188 0.0224  0.075  

1

f cm      0.0  0.0340  0.0416  0.0  0.0289  0.00844 

 

The results of this case study are shown in Table 5-5. First consider the sb-ROM case for 

a system size of 2800 corresponding to n=140 and T=20. With r=140, the discrepancy as 

before is very small and within numerical tolerance of the calculations. Now with the rank of 

the active subspace reduced to r=130, the accuracy is degraded for all responses as would be 

expected. Depending on the user-defined accuracy, one can select the desired rank r. Next, 

for the go-ROM case, consider the case of system size 200 with n=10 and T=20. For this case, 

after constructing the go-ROM model based a single response (m=1), it is employed to 
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estimate the variations for other sets of responses (m=11, m=21 and m=41). Notice that the 

accuracy is degraded for the responses not included in the construction of the go-ROM model. 

This is again would be expected since the go-ROM is designed for a particular response only. 

This process is repeated for system sizes of 600, and 1000. Notice also that the level of 

accuracy degradation is different for different system sizes; notice for example the case of 

system size equal to 1000 with n=50 and T=20, and r=50. This phenomenon is expected as it 

is difficult to make any quantitative statements about the size of the discrepancy error for any 

responses that are not included in the construction of the go-ROM model.  

In conclusion, we note that the go-ROM approach is very effective is generating the most 

computationally efficient ROM when few responses are desired. On the other hands, the sb-

ROM approach has an advantage of flexibility in allowing the user to generate an reduced 

order model that is independent of the choice of the responses.  

  



www.manaraa.com

 

93 

 

Table 5-5. Results for Case Study No. 2 

Approach System Size 
No. Basis  

( r ) 

No. Response 

( m ) 
Discrepancy 

sb-ROM 

2800x2800 140 

1 2.9299E-15 

11 1.4109E-16 

21 3.6632E-16 

41 1.8916E-16 

2800x2800 130 

1 2.9000E-03 

11 7.4583E-04 

21 9.8884E-04 

41 4.6280E-04 

go-ROM 

200x200 10 

1 2.4704E-08 

11 4.0000E-03 

21 1.9800E-02 

41 2.6400E-02 

600x600 30 

1 3.2221E-14 

11 4.2903E-06 

21 6.6096E-04 

41 1.9300E-02 

1000x1000 50 

1 3.6895E-16 

11 4.6729E-08 

21 2.8850E-05 

41 1.4900E-02 

2800x2800 140 

1 1.6043E-16 

11 1.1307E-16 

21 9.3616E-17 

41 6.9009E-17 
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5.3.3. Case Study No. 3  

In this case study, we consider the case that initial values are correlated with an ill-

conditioned covariance matrix; thus, the initial values are perturbed in r  directions, i.e. r  

degree of freedom of the initial value variations, where r  is the numerical rank of the 

covariance matrix. Different with the previous two cases in that the initial values are 

perturbed randomly and independently and n  forward runs and n  adjoint runs are required 

for the sb-ROM approach, the forward run and the adjoint run would be required only r  

times ( n ), respectively.  

The same model in the case study No.2 is used here again and, for clear demonstrations, 

two covariance matrices are manufactured to ill-conditioned ( 30r   and 50r  ). The 

singular values of the covariance matrices are shown in Figure 5-3. Ignoring the components 

associated with small singular values, which have very small effects, the initial value 

variations are only in 30 directions and 50 directions, respectively. The test results are 

compared in Table 5-6. The first column in Table 5-6 represents the number of basis vectors, 

which is denoted as r , used to construct a sb-ROM. Note that the computational cost in 

fourth and fifth columns would be determined by the number of basis vectors to be 

considered. The discrepancies in second and third columns are defined in Eq. (5.22) as a 

metric for error. It can be seen that if the number of basis is not enough to capture the state 

variable variations, the discrepancy would be large, i.e. sb-ROM would not be accurate. 

However, once the sufficient number of basis vectors is extracted, i.e. 30 basis vectors for the 

rank 30 covariance matrix and 50 basis vectors for the rank 50 covariance matrix, we can 
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build an accurate ROM with smaller computational cost (number of code runs in forward and 

adjoint mode) than the size of the system, i.e. r n . It is important to distinguish that the 

computational cost of the go-ROM approach is determined by the number of responses, on 

the other hand, the computational cost of the sb-ROM approach is determined by the active 

subspace.  

Table 5-6. Results for Case Study No. 3 

# of basis 
Discrepancy Computational Cost 

Cov. rank=30 Cov. rank=50 Forward Adjoint 

10 1.7010E-01 2.0790E-01 10 10 

20 7.6733E-02 1.9927E-01 20 20 

30 1.7827E-15 1.0793E-01 30 30 

40 4.3946E-16 6.1200E-02 40 40 

50 5.9064E-16 6.1510E-15 50 50 

60 4.4981E-16 7.5985E-16 60 60 

70 5.9817E-16 1.7439E-15 70 70 

100 3.7814E-16 7.0416E-16 100 100 

140 6.7294E-16 5.1618E-16 140 140 
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Figure 5-3. Singular Values of Manufactured Covariance Matrices 
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CHAPTER 6. REDUCED ORDER HESSIAN CONSTRUCTION 

 

The Hessian matrix which is the second order derivatives of the response with respect to 

the input parameters is constructed by utilizing reduced order modeling (i.e. low rank 

approximation). In nuclear community, Taylor expansion-based perturbation theory has been 

used to estimate response changes due to input parameter variations. In practice, the first 

order adjoint based approach has been recognized as the most powerful tool for sensitivity 

analysis, uncertainty propagation and data assimilation [Cacuci (2003)] because it requires 

only one forward mode and one adjoint mode code execution to calculate the first order 

derivatives with respect to all input parameters. However, for more rigorous sensitivity 

analysis, the interrelations between parameters should be considered. In addition, the 

sandwich rule with the linear assumption would not guarantee the accurate response 

uncertainty propagation for large input parameter uncertainty (i.e. variations) due to 

nonlinear effects. Though the higher order sensitivity analysis methods have been well-

established [Gandini (1978a, 1978b), Greenspan et al. (1978), Greenspan & Gilai (1978)], 

the computational cost to calculate the higher order derivatives limits the applicability in 

practice because the number of simulations would increase according to the number of input 

parameters. By combining the reduced order modeling techniques and the first order adjoint-

based sensitivity analysis, the reduced order Hessian matrix can be constructed and the 



www.manaraa.com

 

97 

second order Taylor series approximation can be built with reduced computational cost. This 

work has been published in Annals of Nuclear Energy [Bang and Abdel-Khalik (2012c)]. 

 

6.1 Mathematical Derivation 

Consider that the second order Taylor expansion for a response  R x  is given by: 

 
         

     

0 0

2

0

0 0 0

1

2

1
        or 

2

T

T

x x

TT

R R
R x R x x x x

x x x

R R S x x x

   
       

        

     H

 (6.1) 

where  0R x  is the zeroth order term, i.e. reference response, 

0x

R

x




 is the first order 

derivative vector 
0

nS   at the reference configuration, 

0

2

x

R

x x



 
 is the second order 

derivative matrix, i.e. Hessian matrix 
0

n nH , nx   is the perturbed input parameters 

given by 0x x , i.e. difference between perturbed and reference configurations and n  is the 

number of input parameters. The main focus is given on constructing the Hessian matrix.  

Differentiating the Eq. (6.1) gives: 

  0 0S S x  H  (6.2) 

where 
x

R
S

x





, i.e. the first order derivatives at the perturbed configuration. Rewriting Eq. 

(6.2) as: 
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0U V H  (6.3) 

where 
0U S S   and 

0V x x x    , then one can see that the Eq. (6.3) has the same form 

with Eq. (4.3), i.e. the linear mapping. Because the Hessian matrix is symmetric, the active 

subspace basis construction and the reduced order Hessian matrix construction can be 

conducted simultaneously.  

Note that the vector U  spans the active subspace which is in    0 0R RT H H . By using 

the range finding algorithm with perturbed input parameters, i.e. 
 i

V  for 1,...,i r , the basis 

vectors in the matrix form Q  can be constructed. Then, Eq. (6.3) can be transformed into 

reduced order form as: 

 
0 0,      T T T

r r rU V U V  Q Q H QQ H  (6.4) 

where T

rU UQ , T

rV VQ  and 
0, 0

T

r H Q H Q . Note that the Hessian matrix 
0

n nH  in 

the original Eq. (6.3) is transformed into lower dimension 
0,

r r

r

H . The error due to the 

transformation can be estimated by three ways as explained in the previous chapter: singular 

value spectrum, in-active component and  -metric.  

Defining the matrix rU  and rV  by 
   1 r

r r rU U 
 

U  and 
   1 r

r r rV V 
 

V , the 

reduced order Hessian matrix can be calculated by solving: 

 1

0,r r r

H U V  (6.5) 

In order to eliminate the effect of numerical error, e.g. rounding, the regularization 

parameter can be introduced into Eq. (6.5) as [Bang & Abdel-Khalik (2011b)]: 
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  
1

0, r r r r

T T T T

r r


 
V V V V

H R R I R Q U  (6.6) 

where 
r r

T

r 
V V

V Q R , i.e. QR decomposition,   is a regularization factor and I  is an identity 

matrix. Note that 
   1 r

U U 
 

U  and 
   1 r

V V 
 

V  are used both for the basis 

construction and the Hessian construction, i.e. the total number of simulation sequences (i.e. 

forward mode and adjoint mode) is only 1r  , i.e. 1 at the reference configuration and r  at 

the perturbed configuration.  

Once the basis vectors and the reduced order Hessian matrix are obtained, the response 

change can be estimated by the second order approximation: 

      0 0 0,

1

2

T
T T T

rR R S x x x     Q H Q  (6.7) 

The original Hessian matrix can be recovered by: 

 
0 0.

T

rH QH Q  (6.8) 

The RO Hessian construction algorithm is summarized as follows: 

Algorithm: Reduced Order Hessian Construction Method 

Consider that the 2
nd

 order Taylor expansion of a single-valued response ( )R x  around 

0x : 

0 0 0 0 0 0

1
( ) ( ) ( ) ( ) ( )

2

T TR x R x x x S x x x x    H  

where  1 ...
T

nx x x  represents a vector of n  input data, 0x  denote the reference 

values for the input parameters, 
0S  is the gradient vector containing the response’s first 

order derivatives evaluated at the input parameters reference values, and 0H  is the 
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unknown Hessian matrix containing all second order derivatives. This algorithm 

requires running the forward model and the adjoint model r s  times, where r is the 

user’s estimate of the rank, and s are oversamples needed to check whether the user-

defined tolerance is met. For all practical purposes, s  is a small integer, e.g., 10s  . 

The reduced order 2
nd

 order Taylor expansion model can be constructed employing a 

user-defined tolerance   as follows:  

Step 1) Draw random vectors 
 i

V , 1,...,i r s  .  

Step 2) Perturb input parameters as follows:    
0

i i
x x V  , 1,...,i r s   

Step 3) DO 1,2,...,i r s  ,  

              compute    
0

i i
U S S  ,  

               where 
 i

S are the sensitivities calculated with perturbed input parameters 
 i

x .  

            END DO 

Step 4) Set 0j   and  0 Q , the 0n  empty matrix 

Step 5) 1j j   

Step 6)      
1 1

j jT

j jU U  I Q Q  

Step 7) 
   

/
j j

jq U U  

Step 8) 
1j j jq

   Q Q  

Step 9) Compute      i r iT

j jz U


 I Q Q , 1,...,i s  

Step 10) If       1 2
max , ,...,

s
z z z  , go to Step 11,  

             else increases r  and go back to Step 1, 

Step 11 ) 
jQ Q ,  

   1 j
U U 
 

U , 
   1 j

V V 
 

V , and rank r j  

Step 12) Compute the projected matrices: T

rV = Q V  and T

rU = Q U  

Step 13) Compute the reduced order Hessian matrix: 
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 
1

0, r r r r

T T T T

r r


 
V V V V

H R R I R Q U  

              where regularization parameter   

Step 14) Construct the reduced order 2
nd

 order Taylor expansion model: 

                      0 0 0

1

2

T
T T T TR R S x x x     Q Q H Q Q  

 

6.2 Numerical Test 

Problem Description 

The Hessian construction approach is tested for 
effk  value estimation. Note that the 

neutron transport equation is given by:  

 

     
 

     

   
4

4

, , , , ,

1
' ' ' , ' , ', '

4

         ' ' , ' , ' , ', '

t

f

eff

s

r E r E r E

E
dE d E r E r E

k

dE d r E E r E




 


 








   

     

       
 

 

 

 (6.9) 

By applying a numerical method, Eq. (6.9) can be represented in a operator form: 

    
1

effk
   L F  (6.10) 

where  L   can be interpreted as a loss of neutrons and  F  can be production and 

effk  is an eigenvalue to balance the loss and the production of neutrons. Note that the 

operators L  and F  are functions of reaction cross sections  . The problem considered here 
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is to estimate the 
effk  change due to reaction cross section variations from the reference 

configuration: 

      0 0 0 0

,0

1

eff effk k
         


L F  (6.11) 

where 
0 , 0  and 

,0effk  are reference configurations.  

The perturbation theory based on the Taylor expansion can be used to estimate the 

response change due to input parameter variation: 

 
         

     

0 0

2

0

0 0 0

1
Higher Order Terms

2

1
        or Higher Order Terms

2

T

T

TT

k k
k k

k k S

 

   
          

       

      H

 (6.12) 

where  0k   is the zeroth order term, i.e. reference response, 

0

k






 is the first order 

derivative vector 
0S  at the reference configuration, 

0

2k






 is the second order derivative 

matrix, i.e. Hessian matrix 0H  and   is perturbation of input parameters given by 
0 , 

i.e. difference between perturbed and reference configurations. In this study, the second order 

Taylor expansion is considered as a surrogate model and reduced order modeling technique 

is used to reduce the computational cost to calculate the Hessian matrix 0H .  
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Implementation 

For calculating the first order derivatives, TSUNAMI-2D control module of SCALE6.1 

[RSICC (2011)] is used. TSUNAMI-2D control module generates the input files for 

resonance calculation module (e.g. NITAWL, BONAMI or CENTRM), transport solver (i.e. 

NEWT for forward and adjoint mode) and sensitivity calculation module (i.e. SAMS). The 

SAMS calculates the sensitivity coefficients (i.e. relative first order derivative) of user-

defined responses, i.e. 
effk  in this test, with respect to the self-shielded macroscopic cross 

sections. For testing the reduced order Hessian construction algorithm, the working library 

for self-shielded macroscopic cross sections is perturbed and NEWT (forward) – NEWT 

(adjoint) – SAMS sequences are performed to calculate the perturbed sensitivity coefficients. 

Figure 6-1 depicts the model analyzed; it is a stand-alone benchmark model designed by 

OECD/NEA to assess the assumptions in current LWR standard lattice physics scheme for 

generation of few-group cross-sections [Ivanov et al. (2007)]. The 44 energy group library 

(v5-xn44) of SCALE6.1 is used and the reference 
effk  is 1.08383475. With the perturbed 

self-shielded macroscopic cross sections   and the resulting sensitivity coefficients S , the 

reduced order Hessian matrix construction and all subsequent calculations are conducted by 

using MATLAB 2011a.  
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Figure 6-1. A 7x7 BWR Benchmark Assembly Model 

 

Two cases are considered. First, the fission cross sections of four nuclides (i.e. U-234, U-

235, U-236 and U-238) in 44 energy group in 9 fuel mixtures are perturbed by  50% from 

uniform distribution, i.e. the dimension of input parameters is 1584 . Second, the scattering 

cross sections, fission cross sections, capture cross sections and neutron yields per fission 

(nubar) of four nuclides (i.e. U-234, U-235, U-236 and U-238) in 44 energy group in 9 fuel 

mixtures are perturbed by 10%  from uniform distribution. In this case, the dimension of 

the input parameters is 6336 . To estimate the accuracy of the second order approximation, 

the test sets are generated and the responses calculated by the original model, i.e. NEWT and 

the first order estimations are compared to the second order estimation with reduced order 

Hessian matrix. The accuracy of the surrogate model is measured by 2R  value: 
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    
  

2

2

2
1

N
i i

actual estimate

i

N
i

actual

i

y y

R

y y



 






 (6.13) 

where  i
actualy  is the response calculated by the original model with the thi  test sample input 

parameters,  i
estimatey  is the response calculated by the reduced order surrogate model with the 

thi  test sample input parameters, y  is the average value of N  responses calculated by the 

original model and N  is the number of test samples. As the 2R  value is closer to 1, the 

estimation is more accurate. 

 

Results 

As the first test case, the fission cross section perturbation case is considered, i.e. 

1584 . As noted in the previous chapter, the active subspace extraction and low rank 

approximation of the Hessian matrix can be conducted simultaneously. Differentiate Eq. 

(6.12) and stacking each sample side-by-side to define the matrix: 

 0U H V  (6.14) 

where    1 r
n rU U   

  
U  and    1 r

n rV V   
  

V  with    
0

i i
U S S   and 

     
0

i i i
V      . Note that by linear algebra: 

    0R RU H  (6.15) 

where  R  is the range, i.e. column space. This implies that the columns of U  and 0H  

span the same subspace, i.e. the subspace spanned by the columns of U  and 0H  can be 
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represented by the same basis vectors. As can be seen in Figure 6-2, the spectrum of the 

singular values is decaying rapidly. Note that after 400
th

 singular value, the magnitudes of 

them are below 510  which is very small. Moreover, considering the precision of cross 

section values, i.e. single precision, the components associated to those small singular values 

are contaminated by numerical error and should be neglected.  
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Figure 6-2. Normalized Singular Value Spectrum of the matrix U   

(Hessian construction, 1584 ) 

 

In Table 6-1, the active subspace basis is examined by  -metric. Note that if the basis is 

identified properly, the response change due to the parameter variation orthogonal to the 

subspace spanned by the basis should be zero. For test, 20 test cases, i.e.  i
  for 1,...,20i   

are randomly generated and orthogonal perturbation is also generated by 
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     i iT   I QQ  for 1,...,20i  . The 20 test cases are compared by using the root 

mean square change defined by: 

 

  
2

0
51RMS [pcm] 10

N
i

i

k k

N





 


 (6.16) 

where 
 i

k  is the 
effk  value in thi  test case, 0k  is 

effk  value at the reference configuration and 

N  is the number of test cases, i.e. 20. Also, the 2-norms of the inactive components are 

compared. As can be seen in Table 6-1, the 
effk  change decreases as the more basis vectors 

are considered, which means that the subspace is captured more properly.  

 

Table 6-1. Summary of Active Subspace Test (Hessian construction, 1584 ) 

Rank 2-Norm of  

Inactive Components 

RMS change [pcm] 

 k    k    

100 2.898520e-002 1623.870501 80.185015 

200 1.045743e-002 1925.696526 26.903832 

300 4.004075e-003 1764.048116 9.347621 

400 1.112478e-003 2113.337578 1.608435 

 

The estimation accuracy is examined by using 100 test samples. The first order 

approximation and the second order approximation with reduced order Hessian construction 

are calculated by: 

  1 0 0

T

stk k S    (6.17) 

       2 0 0 0

1

2

T
T T T T

ndk k S     Q Q H Q Q  (6.18) 



www.manaraa.com

 

108 

where the columns of the matrix n rQ  is the basis of the active subspace. The 

regularization parameter   is assumed to 0.5. The 2R  number defined in the Eq. (6.13) is 

used and the average absolute perturbation, the average absolute discrepancy and the average 

relative discrepancy is defined as: 

   5

0

1

1
Avg.Abs.Perturbation [pcm] 10

N
i

actual

i

k k
N 

    (6.19) 

 
    5

1

1
Avg.Abs.Dis [pcm] 10

N
i i

actual estimate

i

k k
N 

    (6.20) 

 
Avg.Abs.Dis

Avg.Rel.Dis [%] 100
Avg.Abs.Perturbation

   (6.21) 

where  i
actualk  is the 

effk  value calculated by the original model with the thi  test sample input 

parameters,  i
estimatek  is the  

effk  value calculated by the reduced order surrogate model with the 

thi  test sample input parameters and N  is the number of test samples, i.e. 100. As can be 

seen in Table 6-2 and Figure 6-3, the second order approximation by reduced order Hessian 

construction approach can estimate the 
effk  change more accurately than the first order 

approximation by an order level. Note that the reduction factor is defined as: 

 
reduced dimension

Reduction Factor
original dimension

r

n
   (6.22) 
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Table 6-2. Summary of Estimation Results (Hessian construction, 1584 ) 

  

Avg. Abs. 

Perturbation 

[pcm] 
  

Original Model actualk  - 1569.4220 
 

- 

 
r  

Reduction 

Factor 

Avg. Abs. Dis 

[pcm] 

Avg. Rel. Dis 

[%] 
R

2
 

First Order 

Estimation 1stk  
- 517.0471 32.9451 0.9220 

Second 

Order 

Estimation 

2ndk  

100 0.0631 56.5675 3.6043 0.9989 

200 0.1263 32.4746 2.0692 0.9993 

300 0.1894 33.6016 2.1410 0.9992 

400 0.2525 30.7211 1.9575 0.9993 

500 0.3157 29.2548 1.8640 0.9994 

600 0.3788 26.8028 1.7078 0.9996 

700 0.4419 23.7559 1.5137 0.9996 

800 0.5051 25.1294 1.6012 0.9996 

900 0.5682 26.4121 1.6829 0.9996 

1000 0.6313 26.8600 1.7115 0.9996 
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Figure 6-3. Comparison of Estimation Accuracy  

(Hessian construction, 1584 , random direction) 
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To examine the estimation accuracy according to the perturbation magnitude, 30 test 

samples are generated by: 

    i

base i       for 1,...,30i   (6.23) 

where 
base  is randomly generated by 1.5 % perturbation. As can be seen in Figure 6-4, 

the first order estimation loses the accuracy as the perturbation increases, while the second 

order approximation captures the nonlinear behavior of 
effk  changes.  
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Figure 6-4. Comparison of Estimation Accuracy  

(Hessian construction, 1584 , one direction) 

 

As the second test case, the problem with larger dimension but smaller perturbation is 

considered, i.e. 6336 . The same tests are conducted. The singular value spectrum is 

shown in Figure 6-5 and active subspace test is summarized in Table 6-3. The second order 

approximations are presented in Figure 6-6, Figure 6-7 and Table 6-4. The results show that 
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the reduced order Hessian construction approach improves the estimation accuracy and the 

computational cost to construct the Hessian matrix can be reduced successfully.   

 

Table 6-3. Summary of Active Subspace Test (Hessian construction, 6336 ) 

Rank 
Error Estimation 

Upper Bound 

RMS change [pcm] 

 k    k    

100 3.186372e-002 908.924389 68.617675 

200 1.816507e-002 1002.33654 56.248345 

300 1.263442e-002 751.441779 44.177302 

400 9.364596e-003 848.192897 35.475633 

 

Table 6-4. Summary of Estimation Results (Hessian construction, 6336 ) 

    
Avg. Abs. 

Perturbation  

[pcm] 

    

Original Model 

actualk  
- 557.2634   - 

  r  
Reduction 

Factor 

Avg. Abs. Dis  

[pcm] 

Avg. Rel. Dis  

[%] 
R

2
 

First Order 

Estimate 1stk  
- 32.2087 5.7798 0.9965 

Second 

Order 

Estimate 

2ndk  

100 0.0158 18.7735 3.3689 0.9989 

200 0.0316 12.7891 2.2950 0.9993 

300 0.0473 10.2140 1.8329 0.9992 

400 0.0631 9.7751 1.7541 0.9993 

500 0.0789 8.2644 1.4830 0.9994 

600 0.0947 7.7767 1.3955 0.9996 

700 0.1105 7.0500 1.2651 0.9996 

800 0.1263 6.8384 1.2271 0.9996 

900 0.1420 6.7094 1.2040 0.9996 

1000 0.1578 6.7239 1.2066 0.9996 
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Figure 6-5. Singular Value Spectrum of the matrix U   

(Hessian construction, 6336 ) 
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Figure 6-6. Comparison of Estimation Accuracy  

(Hessian Construction, 6336 , random direction) 
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Figure 6-7. Comparison of Estimation Accuracy  

(Hessian Construction, 6336 , one direction) 

 

Note that the nonlinear effects can appear in two different ways. First (left graph in 

Figure 6-8), the response change can be a sum of absolute linear effect and absolute 

nonlinear effect, i.e. 
actual linear nonlinearR R R     . In this case, the linear effect is greater 

than the nonlinear effect for the response change. Consider the linear portion and nonlinear 

portion defined as follows: 

  Linear Portion % 100
linear

actual

R

R


 


 (6.24) 

  Nonlinear Portion % 100
actual linear

actual

R R

R

 
 


 (6.25) 
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Figure 6-8. Response Change Shape and Linear/Nonlinear Effects Portion 

 

Figure 6-9 shows that as the perturbation increases not only the magnitude of the 

nonlinear effect but also its portion in the response change would increase. On the other 

hand, in more highly nonlinear problems, the signs of the actual response change and the first 

order estimation may be different. In this case, the nonlinear effect would be larger than the 

linear effect, i.e. 
linear nonlinearR R   . This implies that the higher order effect would more 

important than the first order effect.  

It is important to note that for the first test case, 400r   is enough to capture all 

influential variations in the active subspace, i.e. the error due to input parameter 

transformation is negligible. On the other hand, for the second test case, 400r   is not 

enough because the error due to input parameter transformation cannot be negligible in view 

of orthogonal test, i.e. Table 6-3. However, in both cases, the average absolute discrepancy, 
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the average relative discrepancy and 2R  value show the same order of accuracy with 400r 

. This implies that for the second case, much higher reduction is achieved within the same 

error tolerance. To explain this, the nonlinear/linear ratio is defined as: 

 NL ratio
actual linear

linear

R R

R

 



 (6.26) 

Figure 6-10 compares the distributions of the NL ratio for the first test case, i.e.  50% 

perturbation and the second case, i.e.  10%, for 100 test sample sets. Because the first test 

case is more nonlinear than the second test case, the NL ratio is larger, which implies that the 

nonlinear effect has higher portion in the response change. The fact that NL ratio is larger 

than 1 means the nonlinear effect is more important than the linear effect in response 

changes. On the other hand, in the second test case, the NL ratio is small and most of them 

are distributed within 0.1 range. This means that the nonlinear effect is less important and as 

explained in the previous chapter, the error in the input parameter transformation and in the 

Hessian matrix construction would be damped, i.e. more reduction can be achieved. This 

observation leads to the important fact that the user-defined tolerance for reduced order 

modeling should be determined by considering the degree of the nonlinearity.  
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Figure 6-9. Comparison of Nonlinear/Linear Portion 
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Figure 6-10. Comparison of Nonlinear/Linear Ratio 
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CHAPTER 7. REDUCED ORDER REGRESSION ANALYSIS 

 

Surrogate model can be constructed basically by assuming a certain functional form with 

some unknown features, e.g., expansion coefficients, and executing the original model at a 

set of points in the parameter space often referred to as a training set. The unknown surrogate 

features can then be identified via a minimization procedure that minimizes the discrepancies 

between the surrogate and original model’s predictions for the training set. Despite their ease 

of implementation, all forward methods suffer from one major limitation; that is the so-called 

curse of dimensionality. This ‘curse’ denotes that the computational cost increases 

exponentially with the number of input parameters. Adopting the reduced order modeling 

techniques, the input parameters are transformed into low dimension and then, the number of 

coefficients to be determined is reduced, which leads to the smaller number of training sets. 

Therefore, the surrogate modeling can be conducted with reduced computational overhead.  

 

7.1 Proposed Method 

Consider that the general Tensor-Free Expansion for the thm  response  mR x  around the 

reference configuration 0x  is given by: 

              
1 1

1

( ) ( ) ( )

, , , , , ,

1 ,... ,... 1

.. ..
l l k k

l k

n
k k kk T k T k T

m i m i m i m i m i m i m

k i i i

R x x x x     


 

       (7.1) 
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The reduced order regression analysis can be two steps. First, the active subspace is 

extracted by examining the derivatives and then, a surrogate model is constructed with 

reduced input parameters. This procedure can be summarized as Figure 7-1. For multi-

response problems, the procedure can be repeated for every response. On the other hands, by 

introducing a pseudo response [Bang & Abdel-Khalik, 2011a], the number of simulations to 

construct the basis vectors can be further reduced, i.e. the basis vectors for all responses are 

extracted simultaneously.  

 

 

Figure 7-1. Schematic of Reduced Order Surrogate Modeling 

 

For cases with very large number of input parameters, the reduced order input parameters 

may be still too large to construct a surrogate model by the existing methods. Note that for 

the second order regression analysis, the number of coefficients to be determined would be 
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  1 2

2

n n 
 and the required number of training sample sets are 2-3 times larger than the 

number of unknowns by rule of thumb. For example, consider that the number of the reduced 

order input parameters is 100. Then, the number of training sample sets would be more than 

10,000, which may be impractical for expensive high-fidelity computer codes.  

Instead of build a complete surrogate model by regression analysis, the multi-surrogate 

approach can be used [Bang and Abdel-Khalik (2012d)]. The basic idea is depicted in Figure 

7-2. A response change can be considered as a sum of the linear component and the nonlinear 

component. Linear part can be captured by the first order Taylor expansion based on adjoint 

sensitivity analysis. Then, only the discrepancy between the original model and the first order 

estimation is fitted by the reduced order regression analysis, i.e. nonlinear reduced order 

surrogate model. One can consider that the nonlinear model is a correction model of the 

linear surrogate model.  

Note that the major parameter variations can be captured by the first a few basis vectors. 

Considering more basis vectors produces more accurate representation of the input parameter 

variations, the accuracy improvement rate would be saturated. The main idea of the multi-

surrogate approach is based on the observations that the effect of the nonlinear behavior, i.e. 

higher order terms, is relatively small compared to the linear portion. Therefore, the error due 

to insufficient basis vectors for higher order surrogate would be damped by the portion of the 

nonlinearity. This can be illustrated by an example. Consider that a response change is the 

sum of 90% linear part and 10% nonlinear part, i.e. higher order terms. If there is 10% error 

in the nonlinear part, the error in the response estimation would be only 1%. This implies that 
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the higher order terms can be reduced further depending on the nonlinearity. The tolerance 

for reduced order modeling tol  should be determined by considering this point.  

 

Figure 7-2. Schematic of the Multi-Surrogate Method 

 

The RO regression analysis method is summarized as follows: 

Algorithm: Reduced Order Regression Analysis Method 

Consider that the Tensor-Free expansion of multi-valued response, i.e.  

 1( ) ( ) ... ( )
T

MR x R x R x  around 0x : 

               
1 1

1

( ) ( ) ( )

0 , , , , , ,

1 ,... ,... 1

.. ..
l l k k

l k

n
k k kk T k T k T

m m i m i m i m i m i m i m

k i i i

R x x R x x x x     


 

          for 

1,...,m M  

where  1 ...
T

nx x x  is a vector of n  input parameters which is given by 

0x x x  , 0x  denote the reference values for the input parameters, x  is a vector of 

input parameter variation from the 0x , ( )

,l

k n

i m   is a coefficient vector and 
,l

k

i m  is a 
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scalar function depending on an assumed surrogate model form. This algorithm 

requires running the forward model and the adjoint model r s  times to construct the 

basis of the active subspace, where r is the user’s estimate of the rank, and s are 

oversamples needed to check whether the user-defined tolerance is met. For all 

practical purposes, s  is a small integer, e.g., 10s  . Once the input parameters are 

transformed into low dimension, a surrogate model can be constructed with reduced 

cost by utilizing the training sample sets generated by the original forward model.  

Step 1) Build a pseudo response    

1

M
i i

pseudo m m

m

R R w


  for 1,...,i r s   

            where mR  is the thm  response,  i
mw  is a randomly generated coefficient. 

Step 2) Perturb input parameters as follows:    
0

i i
x x x    for 1,...,i r s   

Step 3) DO 1,2,...,i r s  ,  

                compute 
 i
pseudoR   (first order derivatives at perturbed inputs 

 i
x ) 

           END DO 

Step 4) Set 0j   and  0 Q , the 0n  empty matrix 

Step 5) 1j j   

Step 6)      
1 1

j jT

j jU U  I Q Q  

Step 7) 
   

/
j j

jq U U  

Step 8) 1j j jq
   Q Q  

Step 9) Compute      i r iT

j jz U


 I Q Q , 1,...,i s  

Step 10) If       1 2
max , ,...,

s
z z z  , go to Step 11,  

             else increases r  and go back to Step 1 

Step 11 ) 
jQ Q  and rank r j  



www.manaraa.com

 

124 

Step 12) Generate the training sample set paired by  

                   
    ,
i i

mx R  for  
  1 2

1,..., 2 or 3
2

r r
i

 
     and 1,...,m M  

Step 13) Determine the reduced order coefficients and construct the surrogate model 

   
           
1 1

1

0 0

( ) ( ) ( )

1 ,... ,... 1

.. ..
l l k k

l k

n
k k kk T T k T T k T T

i i i i i i

k i i i

R x x R x

x x x     


 

 

     QQ QQ QQ
 

Step 14) Generate the test sample set paired by 
    ,,
i i

m actualx R  for 1,...,i N  and 

1,...,m M  

Step 15) Compute the surrogate estimation by the test sample set  

                  
    ,,
i i

m estimatex R  for 1,...,i N   and 1,...,m M  

Step 16) Compare the surrogate estimation 
 

,

i

m estimateR  to the original model calculation 

 
,

i

m actualR   

 

7.2 Numerical Test 

Problem Description 

The reduced order regression approach is implemented to estimate the state variable (i.e. 

fluxes) change due to input parameter variation (i.e. reaction cross sections). The mixture 

flux estimated in this study is defined as: 

 
M

g g

m i i

i m

V 


  (7.2) 
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where g

i  is the flux in cell i  and energy group g , 
iV  is the volume of the cell i , and M  is 

the total number of cells. Therefore, the mixture flux is use for calculating any quantity 

related to the mixture. Note that the cell flux g

i  is calculated by integrating the angular flux 

in Eq. (6.10) by angle and volume.  

 

Implementation 

The reduced order regression algorithm explained in the previous chapter is implemented. 

For calculating the first order derivatives, TSUNAMI-2D control module of SCALE6.1 can 

be used. TSUNAMI-2D control module generates the input files for resonance calculation 

module (e.g. NITAWL or CENTRM), transport solver (i.e. NEWT for forward and adjoint 

mode) and sensitivity calculation module (i.e. SAMS). The SAMS calculates the sensitivity 

coefficients (i.e. relative first order derivative) of self-shielded macroscopic cross with 

respect to user-defined responses. Note that the released TSUNAMI-2D supports only ratio 

type (e.g. reaction rate ratio) as a response. For this study, NEWT and SAMS are modified to 

support a linear type response (i.e. reaction rate) and verified in a systematic way [Bang & 

Abdel-Khalik, 2011c]. For testing the reduced order regression algorithm, the working 

library for self-shielded macroscopic cross sections is perturbed and NEWT (fundamental 

forward) – NEWT (fundamental adjoint) – NEWT (GPT adjoint) – SAMS sequences are 

performed to calculate the perturbed sensitivity coefficients. Figure 7-3 depicts the model 

analyzed; it is a stand-alone benchmark model designed by OECD/NEA to assess the 

assumptions in current LWR standard lattice physics scheme for generation of few-group 
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cross-sections [Ivanov et al. (2007)]. The 44 energy group library (v5-xn44) of SCALE6.1 is 

used and the reference 
effk  is 1.08383475. With the perturbed self-shielded macroscopic 

cross sections   and the resulting sensitivity coefficients S , the regression analysis and all 

subsequent calculations are conducted by using MATLAB 2011a.  

 

 

Figure 7-3. A 7x7 BWR Benchmark Assembly Model 

 

The fission cross sections of four nuclides (i.e. U-234, U-235, U-236 and U-238) in 44 

energy group in 9 fuel mixtures are perturbed by  30% from uniform distribution, i.e. the 

dimension of input parameters is 1584 . The responses are chosen to the mixture fluxes in the 

fuel mixture 1, i.e. the dimension of input parameters is 44 . Note that the SAMS calculates 

the relative sensitivity coefficient, i.e. i

i

R

R




. Therefore, if a pseudo response is built with 

randomly generated w , the basis vectors are scaled by the magnitude of the response: 
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1
1

1
1

1 1
1

1

                           

pseudo M
M

pseudo M
M

pseudo pseudo

M M
M

pseudo pseudo M

R R R
w w

R R R
w w

R R

R R R R
w w

R R R R

   
   

   
     

    
   

     
     

    

 (7.3) 

In order to capture all active subspace of responses properly, the random coefficient are 

weighted by the magnitude of the response value, i.e.: 

 
ˆ

m
m

m

w
w

R
  (7.4) 

where ˆ
mw  is randomly generated from 0 to 1. To estimate the accuracy of the second order 

approximation, the test sets are generated and the responses calculated by the original model, 

i.e. NEWT, and first order estimation are compared. 

 

Results 

The singular value spectrum of the pseudo response sensitivity coefficients are shown in 

Figure 7-4. Considering the precision of the data used in this study, i.e. single precision, the 

components associated to singular values smaller than 510  are easy to be contaminated by 

numerical error, e.g. rounding error, and the impact on the response changes are negligible; 

therefore, in view of transforming the input parameter to low dimension, the number of basis 

vectors should be large enough up to the singular value index corresponding to singular value 

510 . However, those numbers, i.e. more than 400, are too large to be practical to generate 

the training sample sets for regression analysis.  
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Figure 7-4. Singular Value Spectrum of Pseudo Response Sensitivity Vectors  

(Regression Analysis, 1584 ) 

 

To estimate the nonlinearity of the problem, the NL ratios (see Eq. (6.26)) of each 

response for 100 test sample sets are compared in Figure 7-5 and Figure 7-6. Note that 

because the second case described in the Figure 7-2 increases the NL ratio severely, 

investigating that averaging values of the NL ratio may mislead the nonlinearity; thus, the 

distribution, i.e. histogram, is also checked. Note that in the histograms in Figure 7-6, very 

large NL ratios (outliers) are not included. As shown in the graphs, the linear components of 
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the response changes are much greater than the nonlinear components, i.e. for all responses, 

the NL ratios are smaller than 0.3 in more than 50% of the test cases.  
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Figure 7-5. Comparison of the Nonlinear/Linear Ratio 

(Regression Analysis, 1584 ) 
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Figure 7-6. Comparison of Nonlinear/Linear Ratio  

(Regression Analysis, 1584 ) 
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As described in the previous chapter, the linear component is estimated by the adjoint 

sensitivity analysis. For reduced order regression analysis, the discrepancies between the 

actual response changes and the adjoint based first order estimation are corrected by the 

second order polynomial regression analysis with reduced order modeling, i.e.: 

 

       

   

      
0

0 , ,

, 0

2

, ,1 0 ,2 0

    

    

m m m linear m nonlinear
T

m
m linear

T T T T

m nonlinear m m

R R R R

R
R

R  



      

 
   

  

    Q Q

 (7.5) 

where 
,1 ,2, r

m m    and 
n rQ . Two different number of basis vectors are tested; 30r   

and 50r  . As training sets, the 1000 and 3000 sample sets generated by Latin-Hypercube 

sampling (LHS) are used for 30r   and 50r  , respectively. The coefficients are determined 

by least square method and the regularization factor is 510 . To measure the accuracy of the 

RO multi-surrogate method, i.e. second order approximation, 100 test sample sets are 

generated randomly and 2R  values are compared in Table 7-1. As can be seen, the second 

order approximations improve the estimation accuracy. Note that as the number of basis 

vectors increases, the accuracy is improved. To check the estimation accuracy according to 

the magnitude of the input parameter perturbation, the base perturbation is generated by 

1% from uniform distribution and increases by multiplying integer values up to 30. The 

results are shown in Figure 7-7. The first order approximation loses the accuracy as the 

perturbation increases, while the second order approximation captures the nonlinear 

behavior. Note that the more basis vectors are included, the more accurate estimation can be 

expected.  
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Table 7-1. 2R  Value Comparison of Reduced Order Regression Approach 

Response 

No. 

First Order 

Approx. 

Second Order Approx. Response 

No. 

First Order 

Approx. 

Second Order Approx. 

r=30 r=50 r=30 r=50 

1 0.97266 0.99281 0.99712 23 0.97325 0.99864 0.99953 

2 0.97705 0.99644 0.99860 24 0.97797 0.99897 0.99960 

3 0.97387 0.99769 0.99911 25 0.98308 0.99890 0.99968 

4 0.97108 0.99777 0.99904 26 0.98439 0.99916 0.99968 

5 0.97300 0.99777 0.99912 27 0.98369 0.99907 0.99969 

6 0.97123 0.99670 0.99901 28 0.98226 0.99885 0.99962 

7 0.97410 0.99809 0.99920 29 0.98479 0.99899 0.99957 

8 0.97217 0.99790 0.99914 30 0.98548 0.99893 0.99968 

9 0.96957 0.99781 0.99912 31 0.98396 0.99874 0.99958 

10 0.96889 0.99807 0.99927 32 0.98113 0.99879 0.99963 

11 0.96833 0.99820 0.99935 33 0.98244 0.99885 0.99963 

12 0.96915 0.99833 0.99942 34 0.98256 0.99879 0.99957 

13 0.96948 0.99836 0.99944 35 0.98443 0.99880 0.99971 

14 0.96991 0.99841 0.99945 36 0.98407 0.99882 0.99972 

15 0.97039 0.99845 0.99945 37 0.98317 0.99844 0.99959 

16 0.97341 0.99864 0.99953 38 0.98316 0.99835 0.99945 

17 0.97700 0.99872 0.99955 39 0.98336 0.99845 0.99947 

18 0.97918 0.99897 0.99961 40 0.98198 0.99824 0.99934 

19 0.98472 0.99918 0.99968 41 0.98177 0.99650 0.99941 

20 0.97263 0.99865 0.99953 42 0.98046 0.99728 0.99937 

21 0.97371 0.99869 0.99954 43 0.97959 0.99645 0.99938 

22 0.97461 0.99872 0.99955 44 0.97460 0.99557 0.99938 
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Figure 7-7. Comparison of Estimation Accuracy  

(Regression Analysis, 1584 )  
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CHAPTER 8. REDUCED ORDER UNCERTAINTY 

PROPAGATION 

 

Uncertainty quantification requires repeated model executions to capture the impact of 

parameter uncertainty on the responses of interest. The Monte Carlo (MC) sampling 

approach has been widely recognized as the most versatile approach to complete uncertainty 

quantification. This is because it can be implemented in a non-intrusive manner and no 

assumptions have to be made about the model form, e.g. linear vs. nonlinear, single physics 

vs. multi-physics, etc. The idea is to execute the model many times, wherein each execution 

the parameters are sampled from their prior probability distribution functions and the 

resulting response variations are then used to approximate the response probability 

distribution function or calculate moments thereof.  

The MC approach can be classified as a member of forward methods for uncertainty 

quantification; ‘forward’ implies that only the forward model is used to propagate 

uncertainties as opposed to the use of the adjoint model to be described later. Forward 

methods can be divided into two general approaches, first of which is the MC sampling 

approach. The second approach relies on surrogate modeling which approximates the 

behavior of the original model and can be executed inexpensively. Once constructed and its 

accuracy verified, the surrogate is used to propagate uncertainties. There are many different 
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types of surrogate construction techniques: polynomial regression [Myers & Montgomer 

(1995)], Kriging [Sacks et al. (1989)], Multivariate Adaptive Regression Splines [Friedman 

(1991)], radial basis function approximations [Hardy (1971)], artificial neural networks 

[Smith (1993)], polynomial chaos [Ghanem & Spanos (1991)], etc. Although a great deal of 

differences exist between the various surrogate techniques, they are based on a common 

basic approach: that is to assume a certain functional form for the surrogate with some 

unknown features, e.g., expansion coefficients, and execute the original model at a set of 

points in the parameters space often referred to as a training set. The unknown surrogate 

features can then be identified via a minimization procedure that minimizes the discrepancies 

between the surrogate and original model’s predictions for the training set. 

Despite their ease of implementation, all forward methods suffer from one major 

limitation; that is the so-called curse of dimensionality. This ‘curse’ denotes that the 

computational cost increases exponentially with the number of input parameters. A great deal 

of research has therefore focused on identifying efficient sampling strategies known as 

Design of Experiment, which aim to reduce the number of samples while retaining an 

appropriate coverage of the parameter space. Unfortunately, with the increased demand for 

high fidelity predictions, the models continue to be more complex, more expensive to 

execute, and their associated parameters are too many to render a practical application. 

To overcome the curse of dimensionality, the nuclear engineering community has 

leveraged the adjoint methods to constructing linear surrogate models via a sensitivity 

analysis (SA), whereby the coefficients are the first order derivatives of the response of 
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interest with respect to parameters. Adjoint SA requires one to set up another model which 

represents the mathematical dual of the forward model. The advantage over forward methods 

is that the adjoint model needs to be executed only once per a given response. The adjoint 

solution could then be used in conjunction with the reference forward solution to estimate all 

first order derivatives of the given response with respect to all input parameters. This 

property has brought adjoint methods center stage in many scientific fields, especially 

dealing with a large number of parameters and few responses. In regard to the nuclear 

community, the adjoint SA has been employed to complete uncertainty quantification and 

data assimilation.  

Although very powerful, adjoint methods start to lose their competitive advantage when 

higher order derivatives are sought. This is because the computational burden for higher 

order methods becomes dependent on other factors such as the number of parameters. For 

example, if second order derivatives are sought, one needs to execute the adjoint code n  

extra times, where n  is the number of parameters. With first-order adjoint SA, the associated 

estimate for response variation with respect to parameter perturbation is only locally 

accurate, i.e. within a small range of perturbation around reference values for the parameters. 

This limits the utility of adjoint methods to exploratory studies only as opposed to routine 

design calculations where wide ranges of conditions must be analyzed in support of design, 

safety, and operation. 

Moreover, adjoint methods are appropriate with the problems with large number of 

parameters and small number of responses. Note that for a general responses, one 
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fundamental mode adjoint run and one general response mode adjoint run would be required 

in addition to the one fundamental mode forward run. Therefore, if the number of responses 

increases by m , the required additional code run would increase by 2 m . Generally, the 

adjoint run for general response would converge much slowly compared to forward run. 

Considering all these, constructing full sensitivity matrix would not be favorable for cases 

with large number of parameters. In practice, it is generally recommended that before 

conducting uncertainty study, insensitive parameters are screened out to reduce the number 

of parameters to be considered. However, those screening step requires a lot of computations 

and if not properly performed, it may result in inaccurate uncertainty propagation results.  

Recognize that the fundamental issue comes from the large dimensionality. To 

circumvent it, we adopt reduced order modeling (ROM) techniques to reduce the required 

number of code runs. The reduction can be achieved by identifying only the subspace of 

parameter components with large uncertainties and high sensitivities. The intersection 

approach with range finding algorithm can be utilized to identify the subspace, referring to as 

SU-Subspace. Once the basis for SU-Subspace is constructed, it can be incorporated to goal-

oriented surrogate modeling, i.e. uncertainty propagation by 1) Conventional sandwich rule 

with linear assumption; and 2) MC sampling approach with nonlinear surrogate modeling. 

Both approaches are mathematically derived and demonstrated with numerical tests. 

Employing the reduced order modeling technique, the curse of dimensionality in constructing 

the surrogate model for uncertainty propagation would be relieved. 
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8.1 Reduced Order Uncertainty Propagation with Linear 

Assumption 

 

8.1.1 Mathematical Derivation 

The law of the uncertainty propagation, so called sandwich rule, is given as: 

 T

y xC SC S  (8.1) 

where 

0

m n

x

y

x





S  is the first order derivatives of the responses with respect to the 

parameters, i.e. sensitivity matrix, n n

x

C  and m m

y

C  are the parameter and the 

response covariance matrix, respectively, and m  and n  are the number of output responses 

and input parameters, respectively. Note that the parameters are measured by experiments, 

thus the parameters may have an impact from a same uncertainty source, e.g. bias of the 

detector used to measure the multiple parameters and room temperature of the room where 

the experiments were conducted. Therefore, the uncertainty of parameters is usually 

expressed as a covariance matrix xC  which contains the correlations between parameters. 

Two classes of methods have been proposed to evaluate Eq. (8.1); sensitivity-based and 

uncertainty-based methods. Uncertainty-based methods however recognize that the 

parameter covariance matrix could be decomposed using singular value decomposition 

[Golub & Van Loan (1996)], i.e., 2 T

x x x xC U Σ U , yielding: 
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      2

, , , ,

1

n
T T

T

y x x x x x x x x i x i x i x i

i

u u 


  C SU Σ U S SU Σ SU Σ S S  (8.2) 

where 
,1 ,... n n

x x x nu u    U  is an orthonormal matrix and  ,1 ,,...., n n

x x x n   Σ  a 

diagonal matrix. Notice that each term requires the product of the sensitivity matrix with a 

vector, i.e., 
, ,x i x iu . The 

,x iu  is the i th column of the matrix xU  and 
,x i  is the r th singular 

value of the matrix 
xΣ . This matrix-vector product could be evaluated directly using finite 

differencing without explicit access to the elements of the sensitivity matrix as follows:  

    , , 0 , , 0x i x i x i x iu y x u y x   S  (8.3) 

This approach is often mentioned in the literature as Karhunen-Loève expansion 

acknowledging their first proposal for the spectral decomposition of uncertainty information 

in its continuous form [Karhunen (1946), Loève (1945)]. In linear algebra, this is equivalent 

to the singular value decomposition. This approach is effective as it does not require access 

to the sensitivity matrix which could be expensive to evaluate. However, it requires the 

execution of the model as many times as the number of non-zero singular values for the 

parameter covariance matrix. If the parameter covariance matrix is full rank with all singular 

values relatively large, the computational cost will be similar to the sensitivity-based 

approach using forward sensitivity analysis. If, however, many of the singular values can be 

considered small, i.e. effectively zero, the number of model executions can be reduced 

drastically. A small singular values imply a direction in the parameter space which has very 

small uncertainties. Discarding these directions means that the analyst believes its associated 

uncertainties will not impact the response’s uncertainty, and hence a reduction in the number 
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of uncertain input parameters is possible. This is the reason we denote this approach as 

uncertainty-based since it employs only uncertainty information to decide how to render 

reduction in the parameter space.  

In sensitivity-based methods, one determines the matrix S  using either a forward or an 

adjoint sensitivity analysis approach. After that, the response covariance matrix can be 

calculated directly using the sandwich rule in Eq. (8.1). Note that the derivative is the rate of 

change of the response with respect to the parameter calculated locally around some 

reference parameter value. Employing this definition, one can consider the parameter with a 

large derivative to be more sensitive, i.e., more influential, than one with a smaller derivative. 

This follows as a small variation in a parameter with large derivative implies a large variation 

in the response; whereas small variation in a parameter with small derivatives results in a 

small variation in the response. Therefore, derivatives could be used to determine the most 

influential parameters on the responses of interest which proves useful in a number of 

engineering applications such as design optimization to reach certain objectives. In the same 

sense, derivatives could be used to render reduction in the parameter space. The influential 

parameters are assumed to be the key contributors to the propagated uncertainties, as 

variations in the parameters with small sensitivities are not expected to lead to noticeable 

variations in the response. To explain how sensitivity information is used to render reduction 

in the parameter space, consider a singular value decomposition of the sensitivity matrix S  as 

follows: 

 
min( , )

, , ,

1

m n
T T

s s s s i s i s i

i

u v


  S U Σ V  (8.4) 
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where 
,1 ,... m m

s s s mu u    U  is an orthonormal matrix whose columns are referred to 

as the left singular vectors,   min( , ) min( , )

,1 ,min( , ),...., m n m n

s s s m n   Σ  a diagonal matrix, and 

,1 ,... n n

s s s nv v    V  contains the right singular vectors. This decomposition provides 

great insight into the action of a matrix operator. One could describe the action of a matrix on 

a vector x  as follows: 

  
min( , ) min( , )

, , , , ,

1 1

m n m n
T

s i s i s i i s i s i

i i

y x v x u u 
 

      S  (8.5) 

where 
,

T

i s iv x    is the component of x  along the i th right singular vector 
,s iv . First, the 

vector x  is decomposed along the right singular vectors. Second, its components are scaled 

by the singular values. The scaled components represent the components of the resultant 

vector y  along the left singular vectors. Therefore, one can think of the singular vectors as 

simply rotating the vector x  in the parameter space onto the vector y  in the response 

space, with the core action of the operator contained in the singular values. During the 

scaling, some components are magnified, and some are damped. Depending on the variation 

in the singular values sometimes spreading over many orders of magnitude, some of the 

components vanish in comparison to others.  

These observations could be used to render reduction in the parameter and response 

spaces when one has a model with many parameters and many responses which allows for 

more efficient implementations of the forward and adjoint approaches. For example, in the 

forward approach, one employs finite differencing to approximate the action of a matrix-
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vector product of the form: y x  S . This process has to be repeated n  times to cover all 

possible directions in the parameter space. Given however that some of these directions are 

associated with very small singular values, one can discard these directions as they are 

expected to cause very small response changes. Assuming that only the first r  singular 

values are considered influential, the forward sensitivity analysis can be recast as follows: 

 
,

1

r

i s i

i

y x v


    S S  (8.6) 

where the summation runs to r  only. This equation implies that x  is constrained to the 

subspace spanned by the first r  right singular vectors. Therefore, one only needs r  forward 

model executions to cover this subspace. The assumption is that the remaining n r

directions do not impact the responses and therefore can be discarded. 

In the adjoint approach, one employs the adjoint model to calculate the action of a 

matrix-transpose on a vector of the form: 
Tx y  S . This process has to be repeated m  

times to cover all possible directions in the response space. Given however that some of these 

directions vary very little due to parameter variations, one can exclude them from the adjoint 

SA. Assuming one considers only the first r  singular values as done before, the adjoint 

sensitivity analysis can be recast as follows: 

 
,

1

r
T T

i s i

i

x y u


    S S  (8.7) 

This equation implies that y  is constrained to the subspace spanned by the first r  left 

singular vectors. Therefore, one only needs r  adjoint model executions to cover this 



www.manaraa.com

 

159 

subspace. The assumption is that the remaining m r  directions do not vary due to parameter 

variations. 

If the singular value decomposition is known, the resulting error from the reduction may 

be estimated exactly as follows: 

 , , , , 1

1

r
T

s i s i s i s r

i

u v  



 S  (8.8) 

where 
, 1s r 

 is the 1r   singular value of the matrix S . In reality however, neither the matrix 

nor its singular value decomposition are known explicitly.  

The proposed method hybridizes the sensitivity and uncertainty-based methods described 

above for completing uncertainty quantification. This approach may be thought of as finding 

an intersection between the two types of reduction: a sensitivity-based reduction which 

identifies directions in the parameter space that are considered the most sensitive, and an 

uncertainty-based reduction identifying the most uncertain directions. Each reduction is 

described by a subspace, whereby parameters perturbations orthogonal to this subspace are 

considered non-influential from sensitivity or uncertainty viewpoint. We denote the 

subspaces generated by sensitivity and uncertainty-based methods as S-active and U-active 

subspaces, respectively. The complementary orthogonal subspaces are referred to as the S-

inactive and U-inactive subspaces. The implicit assumption in these two classes of methods 

is that perturbations that belong to the inactive subspaces do not affect the response 

uncertainties. Since the response uncertainties are the product of two factors, the sensitivities 

and prior uncertainties, it becomes impossible to quantify the resulting error in the response 
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uncertainties a priori, i.e. before the uncertainties are propagated. This follows as no 

information on the other factor is used to advise the reduction. In practice, the uncertainties 

are propagated and then compared to those calculated by a Monte Carlo sampling-based 

approach to provide confidence in the reduction employed.  

What is proposed here is a hybrid approach that combines these two approaches and 

identifies an active subspace that represents both influential sensitivity and uncertainty 

information, denoted hereinafter as SU-active subspace. In addition to reducing the 

computational cost, this approach allows one to establish an upper-bound on the error 

resulting from the reduction which provides an advantage over existing methods. The main 

idea is finding the basis of the SU-active subspace. This is illustrated in Figure 8-1. The S-

active subspace and the U-active subspace are expressed as ̂  and ̂  vectors. Note that the 

SU-active subspace is the intersection between those two subspaces expressed by q̂  vectors.  

 

 

Figure 8-1. Illustration of SU-Active Subspace 
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Consider re-writing Eq. (8.2) as follows: 

 

     
 

     

1/2 1/2

1/2 1/2 1/2 1/2

    

    

T
T T T T

y x x x x

T T T T

x x
T T

T T T T

x x x x

   

 

   

  

 

 

C SU Σ QQ Q Q SU Σ QQ Q Q

SC QQ Q Q C S

SC QQ SC QQ SC Q Q SC Q Q

 (8.9) 

Note that: T T n n    QQ Q Q I , where the range of the matrix n rQ  is intended 

to describe the SU-active subspace (combining both sensitivity and uncertainty information). 

Assuming that Q is known, composed of r  columns  1 ... n r

rq q  Q , one can 

employ finite differencing to evaluate response uncertainties as follows: 

    1/2

0 0 ;  1,...,x i iq y x z y x i r   SC  (8.10) 

where 1/2

i x iz q= C  is a vector. The error resulting from this reduction may be described as 

follows: 

  
22

1/2 1/2 1/2 1/2T T T T T

y x x x x

    C SC QQ C S SC Q Q SC I QQ  (8.11) 

We use a range finding algorithm to provide an error bound on the term 

 1/2 T

x SC I QQ  which in turn limits the error on the response uncertainties. 

Now, we discuss how the matrix Q  is constructed. Let 1/2

xA = SC  and employing the 

RFA algorithm, one needs to evaluate  1/2 1/2
T

T T T

x xw w w A SC C S . As discussed earlier, 

the adjoint approach can be used to evaluate a matrix-transpose-vector product of the form: 

T wS . In earlier work [Bang & Abdel-Khalik, 2011a], we show that this is equivalent to 

setting up an adjoint model with a pseudo response of the form: 
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1

m
T

pseudo i i

i

y w y w y


   (8.12) 

where  
1

m

i i
w


 are random scalars. Therefore, one can employ pseudo responses with random 

weights then multiply the resultant vector with the matrix 1/2

xC  to emulate the matrix-

transpose-vector product 
T wA . According to the RFA algorithm, this is repeated r s  times 

to find a subspace spanned by r  directions representing the columns of the matrix Q . 

The algorithm for the proposed method is summarized below: 

 

Algorithm: Reduced Order Uncertainty Propagation with Linear Assumption 

 

Given a user-defined tolerance   and a user-defined small number s ;  

Step 1) Set  1k   

Step 2) Generate the 
thk  random vector 

  1k mw   where m  is the number of 

responses. 

Step 3) Construct a pseudo response:  
   k k T

pseudoy w y . 

Step 4) Employing adjoint SA, calculate:  

 k

pseudody

dx
. 

Step 5) Update:  

   1

1/2 ...

k

pseudo pseudoT n k

x

dy dy

dx dx


 

  
  

G C . 

Step 6) Determine the rank r of the sensitivity matrix G. 

Step 7) Employ RFA algorithm until the tolerance   is satisfied  

Step 7) If the rank has not been reached yet, increase k  and go back to step 2. 

Step 8) Write G QR  , where  
n rQ . 



www.manaraa.com

 

163 

Step 9) Execute the simulation to calculate:    1/2

0 0i x iy y x q y x   C  for 1,...,i r . 

Step 10) Determine  1 ry y  Y  . 

Step 11) Compute the propagated uncertainty: T

yC = YY . 

 

Note that in this algorithm access to the matrix 1/2

xC  is required. This is possible via an 

SVD decomposition as shown before, 
1/2 1/2

,1 ,1 , ,x x x x x x n x nu u   
 

C U Σ . 

 

8.1.2 Numerical Test 

Problem Description & Implementation 

The reduced order uncertainty propagation method with linear assumption is used to 

calculate the response covariance matrix. For calculating the first order derivatives, 

TSUNAMI-2D control module of SCALE6.1 can be used. TSUNAMI-2D control module 

generates the input files for resonance calculation module (e.g. NITAWL or CENTRM), 

transport solver (i.e. NEWT for forward and adjoint mode) and sensitivity calculation module 

(i.e. SAMS). The SAMS calculates the sensitivity coefficients (i.e. relative first order 

derivative) of self-shielded macroscopic cross with respect to user-defined responses. Note 

that the released TSUNAMI-2D supports only ratio type (e.g. reaction rate ratio) as a 

response. For this study, NEWT and SAMS are modified to support a linear type response 

(i.e. reaction rate) and verified in a systematic way [Bang & Abdel-Khalik (2011c)]. For 

testing the reduced order regression algorithm, the working library for self-shielded 

macroscopic cross sections is perturbed and NEWT (fundamental forward) – NEWT 
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(fundamental adjoint) – NEWT (GPT adjoint) – SAMS sequences are performed to calculate 

the perturbed sensitivity coefficients. Figure 8-2 depicts the model analyzed; it is a stand-

alone benchmark model designed by OECD/NEA to assess the assumptions in current LWR 

standard lattice physics scheme for generation of few-group cross-sections [Ivanov et al. 

(2007)]. The 44 energy group library (v5-xn44) of SCALE6.1 is used and the reference 
effk  

is 1.08383475. With the perturbed self-shielded macroscopic cross sections   and the 

resulting sensitivity coefficients S , the regression analysis and all subsequent calculations 

are conducted by using MATLAB 2011a.  

 

 

Figure 8-2. A 7x7 BWR Benchmark Assembly Model 

 

As input parameters, the fission cross sections of four nuclides (i.e. U-234, U-235, U-236 

and U-238) in 44 energy group in 9 fuel mixtures, i.e. the dimension of input parameters is 

1584  are considered. The SCALE6.1 covariance data, i.e. 44groupcov, is used as the input 
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parameter covariance matrix. The responses are chosen to the mixture flux defined in Eq. 

(7.2). 

 

Results 

First, the singular values are compared to get an insight about the required number of 

basis vectors. Figure 8-3 compares the singular value spectrums of sensitivity matrix of the 

pseudo response and the pseudo response sensitivity pre-multiplied by 
1/2T

C , i.e. S-active 

subspace and SU-active subspace. As can be seen, the singular value spectrum of the SU-

active subspace is decaying more quickly than the one of the S-active subspace. This implies 

that the smaller number of basis vectors are required to achieve a certain level of accuracy 

and a less number of simulation with the proposed reduced order uncertainty propagation 

method than the one with sensitivity-based or uncertainty-based methods.  
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Figure 8-3. Singular Value Spectrum Comparison 

(Linear Uncertainty Propagation, 1584 ) 
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The response uncertainty is calculated with r =10, 20, 30, and 40 and compared in 

Figure 8-4. In Figure 8-5, the error norms explained in Eq. (8.11) are plotted according to 

the number of basis vectors. As the number of basis vectors increases, the error norm 

decreases. A user can determine the required number of basis vectors, i.e. order of reduction, 

for the purpose of the analysis, e.g. prioritization of the uncertainty factors. For comparison, 

the absolute sense uncertainty calculation results are presented in Figure 8-6 ~ 9. One can 

see more clearly that as the subspace size increases, the estimated uncertainty is getting 

closer to the one of the conventional sandwich approach.  
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Figure 8-4. Comparison of Response (Relative) Uncertainty Calculation  

(Linear Uncertainty Propagation, 1584 ) 
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Figure 8-5. Error Norm for Reduced Order Uncertainty Propagation Method  

(Linear Uncertainty Propagation, 1584 ) 
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Figure 8-6. Comparison of Response (Absolute) Uncertainty Calculation (r=25) 

(Linear Uncertainty Propagation, 1584 ) 
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Figure 8-7. Comparison of Response (Absolute) Uncertainty Calculation (r=50) 

(Linear Uncertainty Propagation, 1584 ) 

 

0 100 200 300 400

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

 

 

 Conventional Sandwich

 Reduced Order App. r=75

A
b

so
lu

te
 R

e
sp

o
n

se
 U

n
c
e
rt

a
in

ty
 (

S
ta

n
d

a
rd

 D
e
v

ia
ti

o
n

)

Response Number

 

Figure 8-8. Comparison of Response (Absolute) Uncertainty Calculation (r=75) 

(Linear Uncertainty Propagation, 1584 ) 
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Figure 8-9. Comparison of Response (Absolute) Uncertainty Calculation (r=100) 

(Linear Uncertainty Propagation, 1584 ) 

 

 

8.2 Reduced Order Uncertainty Propagation with Nonlinear 

Surrogate Modeling 

 

8.2.1 Mathematical Derivation 

The reduced order surrogate modeling can be extended to nonlinear uncertainty 

propagation. More specifically, one can construct the surrogate model only for uncertainty 

quantification, i.e. goal-oriented surrogate modeling. Consider that a parameter variation due 

to uncertainty can be expressed as: 

 1/2

xx  C  (8.13) 
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where 
n   is a vector of which elements are randomly sampled from normal distribution 

with mean 0   and standard deviation 1   and 1/2

xC  is given by 1/2 1/2T

x x xC C C . Consider 

the singular value decomposition of 1/2 T

x c c cC U Σ V , then Eq. (8.13) can be rewritten as: 

 
, , ,

1

n
T T

c c c c i c i c i

i

x u v  


  U Σ V  (8.14) 

Note that if the magnitude , ,

T

c i c iv   (which is a scalar value) is small, the contribution of the 

direction 
,c iu  would be also small. This implies that the parameter variation x  can be 

approximated by  ,c iu  vectors only corresponding to the large  , ,

T

c i c iv   and the only 

components of   which is parallel to the ,c iv  would be contribute the x . Therefore, we 

define U-active subspace as a subspace spanned by  ,c iv  vectors.  

As explained before, the model has its own active subspace which is spanned by all 

coefficient vectors and this subspace is referred to as S-active subspace. Therefore, among 

the parameter variations, only components along the S-active subspace would contribute to 

the response changes. This implies that only the component of the random perturbation 

included in both U-active subspace and S-active subspace, i.e. SU-active subspace, would 

contribute to the response change. Define that the columns of the matrix 
n rQ  span the 

intersection of U-active subspace and S-active subspace. It is important to note that one can 

expect  min ,U Sr r r , where Ur  and Sr  are the numbers of the basis vectors of U-active 

subspace and S-active subspace, respectively.  
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For illustration, assume that an unknown surrogate model has a form as: 

          
2 2

1/2 1/2

1 2 1 2

T T T TR f x x x             C C  (8.15) 

where 
1 2, , , nx     and 

1/2 n nC . Note that the random variations can be 

decomposed into: 

       (8.16) 

where   is the component in SU-active subspace spanned by the columns of the matrix Q  

and  
 is the complementary component orthogonal to SU-active subspace. Note that   

can be calculated by projecting onto the SU-active subspace, i.e. T QQ Q , which is a 

linear combination of the columns of the matrix Q . This implies that once the matrix Q  is 

given, the parameter variations can be represented by 
r  and, in the same sense 

described in the previous Chapter 4.2, the reduced order model of the surrogate model can be 

constructed as: 

 

     
   
   

2
1/2 1/2

1 2
2

1/2 1/2

1 2
2

1, 2,

                 

                 

T T

x x

T T T T

x x

T T

r r

R f x    

   

   

    



 

C C

C QQ C QQ  (8.17) 

where 1/2

1, 1

T T

r x Q C , 1/2

2, 2

T T

r x Q C  and 
T Q  and the dimension of all those 

vectors are r . The surrogate model can be constructed by examining the pairs of 

    ,
i i

R   where 
 i  is  iTQ  and 

 i
R  is calculated by running the simulation code with 

perturbed parameter given by    1/2i i

xx  C . Once the accurate surrogate model is 
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constructed, the original model can be replaced by the surrogate mode and any existing 

sampling based uncertainty propagation methods, i.e. Monte-Carlo method, can be used to 

estimate the response uncertainty.  

The basis of the SU-active subspace, i.e. the matrix Q , can be constructed by the 

following way. First, define a pseudo response as random linear combination of all 

responses. As described in the above section, the first order derivative of pseudo responses at 

random points would span the S-active subspace. By pre-multiplying the 1/2T

xC  to the 

derivatives, one can filter out the component only in the U-active subspace. Note that the 

resulting vectors would span the SU-active subspace. According to the RFA algorithm, this is 

repeated r s  times to find a subspace spanned by r  directions. 

The algorithm for the proposed method is summarized below: 

Algorithm: Reduced Order Uncertainty Propagation via Nonlinear Surrogate 

Modeling 

Given a user-defined tolerance   and a user-defined small number s ;  

Step 1) Set  1k   

Step 2) Generate the 
thk  random vector 

 k mw   where m  is the number of 

responses. 

Step 3) Construct a pseudo response:  
     

1

m
k k T k

pseudo i i

i

R w R w R


  . 

Step 4) Employing adjoint SA, calculate:  

 k

pseudodR

dx
. 

Step 5) Update:  

   1

1/2 ...

k

pseudo pseudoT n k

x

dR dR

dx dx


 

  
  

G C . 
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Step 6) Determine the rank r of the sensitivity matrix G . 

Step 7) Employ RFA algorithm until the tolerance   is satisfied  

Step 8) If the rank has not been reached yet, increase k  and go back to step 2. 

Step 9) Write G QR  , where  n rQ . 

Step 10) Sample the training sets for reduced order surrogate model construction.  

Step 11) Construct a reduced order surrogate model for each response. 

Step 12) Generate the sample sets for uncertainty propagation. 

Step 13) Calculate the responses by using the reduced order surrogate model.  

Step 14) Compute the propagated uncertainty:   
2

1

1 N
i

j j

i

R
N




  . 

 

8.2.2 Numerical Test 

Problem Description 

The reduced order uncertainty propagation algorithm via reduced order surrogate 

modeling is implemented. The reduced order uncertainty propagation method is used to 

calculate the response covariance matrix and the distribution of the responses.  

 

Implementation 

For calculating the first order derivatives, TSUNAMI-2D control module of SCALE6.1 is 

used. TSUNAMI-2D control module generates the input files for resonance calculation 

module (e.g. NITAWL or CENTRM), transport solver (i.e. NEWT for forward and adjoint 

mode) and sensitivity calculation module (i.e. SAMS). The SAMS calculates the sensitivity 

coefficients (i.e. relative first order derivative) of self-shielded macroscopic cross with 
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respect to user-defined responses. Note that the released TSUNAMI-2D supports only ratio 

type (i.e. reaction rate ratio) as a response. For this study, NEWT and SAMS are modified to 

support a linear type response (i.e. reaction rate) and verified in systematic way [Bang & 

Abdel-Khalik (2011)]. For testing the reduced order regression algorithm, the working 

library for self-shielded macroscopic cross sections is perturbed and NEWT (fundamental 

forward) – NEWT (fundamental adjoint) – NEWT (GPT adjoint) – SAMS sequences are 

performed to calculate the perturbed sensitivity coefficients. As input parameters, the fission 

cross sections of four nuclides (i.e. U-234, U-235, U-236 and U-238) in 44 energy group in 9 

fuel mixtures, i.e. the dimension of input parameters is 1584  are considered. Note that with 

the covariance matrix provided with SCALE6.1, i.e. 44groupcov, the input parameter 

perturbation would be too small to see the nonlinear response change. Thus, to emulate the 

nonlinear problem, the manufactured covariance matrix is used for this test, i.e. the element 

of the covariance matrix for each nuclide is assumed 0.1.  The responses are chosen to the 

mixture flux defined in Eq. (7.2). The pseudo response is built as explained in Eq. 

Error! Reference source not found.. With the perturbed self-shielded macroscopic cross 

sections   and the resulting sensitivity coefficients S , all subsequent calculations are 

conducted by using MATLAB 2011a.  

 

Results 

First, the singular values are compared to get an insight about the required number of 

basis vectors. Figure 8-10 compares the singular value spectrums of sensitivity matrix of the 
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pseudo response and the pseudo response sensitivity pre-multiplied by 
1/2T

C , i.e. S-active 

subspace and SU-active subspace. As can be seen, the singular value spectrum of the SU-

active subspace is decaying more quickly than the one of the S-active subspace. This implies 

that the smaller number of basis vectors are required to achieve a certain level of accuracy 

and less number of simulation with the proposed reduced order uncertainty propagation 

method than the one with sensitivity-based or uncertainty-based methods.  
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Figure 8-10. Singular Value Spectrum 

(Nonlinear Uncertainty Propagation, 1584 ) 

 

In Table 8-1, the average values of the 100 NL ratios defined in Eq. (6.26) are compared 

to see the nonlinearity of the responses. As can be seen, the average NL ratios are small, 

which means the linear behavior is much larger than the nonlinear behavior. Therefore, the 



www.manaraa.com

 

176 

impact of the error due to the reduction in the higher order terms would be damped, i.e. 

significant reduction of the dimension can be achieved.  

 

Table 8-1. Average NL Ratio Comparison of the 100 Test Samples  

(Nonlinear Uncertainty Propagation, 1584 ) 

Response No. NL Ratio Response No. NL Ratio 

1 5.8218E-02 23 3.1338E-02 

2 4.3656E-02 24 1.7700E-02 

3 2.2873E-02 25 1.2658E-02 

4 3.4311E-02 26 1.2821E-02 

5 1.7446E-02 27 1.7681E-02 

6 4.7323E-02 28 7.3931E-02 

7 2.9120E-02 29 3.1193E-02 

8 3.9443E-02 30 2.1806E-02 

9 9.8798E-02 31 2.6172E-02 

10 2.6266E-02 32 2.0107E-02 

11 3.9656E-02 33 1.4801E-02 

12 2.8238E-02 34 1.4578E-02 

13 9.1046E-02 35 1.1198E-01 

14 3.7959E-02 36 6.1870E-02 

15 4.2748E-02 37 2.7874E-02 

16 3.3972E-02 38 2.5464E-02 

17 1.8617E-02 39 2.5597E-02 

18 3.1805E-02 40 2.7606E-02 

19 7.1772E-01 41 2.9057E-02 

20 1.7533E-02 42 2.2408E-02 

21 1.4763E-02 43 2.0636E-02 

22 2.2353E-02 44 1.9696E-02 

 

In Table 8-2, the 2R  values for the first order approximation and the second order 

approximation with multi-surrogate modeling are listed. As can be seen, the second order 

approximation estimates the response changes very accurately; thus, it can replace the 

original model.  
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Table 8-2. 2R  Value Comparison of Reduced Order Regression Approach ( 50r  ) 

Response No. 
First Order 

Approx. 

Second Order 

Approx. 
Response No. 

First Order 

Approx. 

Second Order 

Approx. 

1 9.99238E-01 9.99889E-01 23 9.99861E-01 1.00000E+00 

2 9.99632E-01 9.99965E-01 24 9.99873E-01 1.00000E+00 

3 9.99771E-01 9.99992E-01 25 9.99880E-01 9.99999E-01 

4 9.99835E-01 9.99998E-01 26 9.99883E-01 1.00000E+00 

5 9.99892E-01 9.99998E-01 27 9.99877E-01 1.00000E+00 

6 9.99860E-01 9.99997E-01 28 9.99873E-01 1.00000E+00 

7 9.99877E-01 9.99998E-01 29 9.99870E-01 1.00000E+00 

8 9.99849E-01 9.99998E-01 30 9.99864E-01 1.00000E+00 

9 9.99848E-01 9.99998E-01 31 9.99858E-01 9.99999E-01 

10 9.99839E-01 9.99999E-01 32 9.99852E-01 9.99999E-01 

11 9.99830E-01 9.99999E-01 33 9.99848E-01 1.00000E+00 

12 9.99825E-01 9.99999E-01 34 9.99841E-01 1.00000E+00 

13 9.99825E-01 9.99999E-01 35 9.99834E-01 1.00000E+00 

14 9.99825E-01 9.99999E-01 36 9.99828E-01 1.00000E+00 

15 9.99836E-01 9.99999E-01 37 9.99822E-01 1.00000E+00 

16 9.99836E-01 9.99999E-01 38 9.99816E-01 1.00000E+00 

17 9.99836E-01 9.99999E-01 39 9.99810E-01 1.00000E+00 

18 9.99851E-01 9.99999E-01 40 9.99805E-01 1.00000E+00 

19 9.99868E-01 9.99999E-01 41 9.99798E-01 1.00000E+00 

20 9.99852E-01 9.99999E-01 42 9.99779E-01 1.00000E+00 

21 9.99850E-01 9.99999E-01 43 9.99749E-01 1.00000E+00 

22 9.99856E-01 1.00000E+00 44 9.99637E-01 1.00000E+00 

 

In Figure 8-11, the distribution of the response changes due to the input parameter 

variations are shown. The blue line is the normal distribution curve. Because the model is the 

thermal reactor model, the thermal region, i.e. energy group number > 25, is more sensitive 

than the fast region, i.e. energy group number < 25. Therefore, one can see larger uncertainty 

for responses in thermal region and larger deviation from the normal distribution. In Table 8-
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3 and Figure 8-12, the response uncertainties estimated by the nonlinear surrogate approach 

and the conventional sandwich rule are compared. One can see that the conventional 

sandwich underestimates the response uncertainty due to the linear assumption.  

 

Table 8-3. Comparison of the Response Uncertainty Estimations 

(Nonlinear Uncertainty Propagation, 1584 ) 

Response 

No.  

Response Uncertainty Estimate 
Response 

No.  

Response Uncertainty Estimate 

Nonlinear 

Surrogate 

Conventional 

Sandwich 

Nonlinear 

Surrogate 

Conventional 

Sandwich 

1 6.06042E-03 5.82048E-03 23 8.10094E-03 7.97372E-03 

2 6.21874E-03 6.01350E-03 24 8.75438E-03 8.62924E-03 

3 6.31496E-03 6.13785E-03 25 9.64688E-03 9.51095E-03 

4 6.40806E-03 6.26321E-03 26 1.10161E-02 1.08555E-02 

5 6.40889E-03 6.26446E-03 27 1.24038E-02 1.22079E-02 

6 6.41212E-03 6.27744E-03 28 1.30603E-02 1.28499E-02 

7 6.42623E-03 6.29069E-03 29 1.38409E-02 1.36209E-02 

8 6.40477E-03 6.26900E-03 30 1.52814E-02 1.50600E-02 

9 6.38215E-03 6.24486E-03 31 1.66131E-02 1.63870E-02 

10 6.41187E-03 6.27566E-03 32 1.73436E-02 1.71056E-02 

11 6.53713E-03 6.40194E-03 33 1.80558E-02 1.78083E-02 

12 6.73082E-03 6.59879E-03 34 1.92486E-02 1.89864E-02 

13 6.80460E-03 6.67260E-03 35 2.10391E-02 2.07538E-02 

14 6.86512E-03 6.73472E-03 36 2.27006E-02 2.23907E-02 

15 7.11772E-03 6.99188E-03 37 2.41212E-02 2.37920E-02 

16 7.15222E-03 7.02825E-03 38 2.52877E-02 2.49449E-02 

17 7.45622E-03 7.32506E-03 39 2.63234E-02 2.59713E-02 

18 7.72519E-03 7.59841E-03 40 2.72784E-02 2.69175E-02 

19 8.62395E-03 8.50377E-03 41 2.90935E-02 2.86996E-02 

20 7.76254E-03 7.64102E-03 42 3.20503E-02 3.15785E-02 

21 7.74099E-03 7.61439E-03 43 3.44596E-02 3.39301E-02 

22 7.94718E-03 7.81521E-03 44 4.10244E-02 4.03679E-02 
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Figure 8-11. Response Change Distribution due to Input Parameter Uncertainty  

(Nonlinear Uncertainty Propagation, 1584 )
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Figure 8-12. Comparison of the Response Uncertainty Estimations 

(Nonlinear Uncertainty Propagation, 1584 ) 
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CHAPTER 9. REDUCED ORDER MODELING FOR 

DEPLETION CALCULATIONS 

 

The intersection subspace approach is exercised on depletion calculations of semi-

realistic assembly models. Not like uncertainty propagation in which only small input 

parameter variations need to be considered, the depletion process changes the material 

number density much more than the one in uncertainty quantification; thus, the nonlinear 

behavior (higher order effects) become more effective. Moreover, because the depletion 

produces many different nuclides due to fission and decay, much more nuclides should be 

taken into account which means the original dimension would be very large and complex 

correlations would appear.  

The reduced order modeling with the range finding algorithm is applied to two assembly 

models; Peach Bottom Unit 2 Boiling Water Reactor (PB-2 BWR) and Watts Bar Unit 2 

Pressurized Water Reactor (WB-2 PWR). BWR model contains Gadolinium (i.e. Gd-155 and 

Gd-157) materials as burnable poison which is burn-out fast in early stage of fuel cycle. Due 

to Gd-155 and Gd-157 burnt-out, it is expected that the flux distributions and the sensitivity 

profiles are changed significantly. The purpose of BWR model test is to examine the 

performance of the proposed reduced order modeling with the intersection approach in the 

highly nonlinear realistic assembly model depletion calculations. With the PWR model, more 



www.manaraa.com

 

190 

realistic depletion calculation is conducted. To capture the burn-up variations, each pin-cell is 

assigned to unique material identification number, which makes the original input parameter 

(macroscopic cross section) dimension very large. Moreover, to emulate the control rod 

insertion, burnable poison rods (BPR) are included in depletion calculations. Thus, the 

purpose of PWR model test is to examine the performance of the proposed reduced order 

modeling with the intersection approach with the full set of assembly calculations for few-

group cross section generation.  

Note that assembly calculation consists of two steps; problem-dependent cross section 

library preparation (resonance self-shielding calculation) and neutron distribution calculation 

by solving transport equation as can be seen in Figure 9-1. For SCALE calculation, 

BONAMI and NEWT are used for resonance calculation and transport calculation, 

respectively. Therefore, one can consider that the lattice physics calculation consists of two 

serially coupled models. Note that BONAMI gets the material data and produces the 

resonance self-shielded macroscopic cross sections which are used by NEWT as input 

parameters to calculate k-eff and scalar fluxes. The purpose of this study is to exercise the 

reduced order modeling on macroscopic cross sections for entire depletion range. Note that 

as the materials are depleted, the number densities of them are changed, which are the inputs 

of BONAMI. First, the active subspace of macroscopic cross section variations determined 

by BONAMI due to number density and temperature variations is examined. This subspace 

will be called as a Variation Subspace (V-Subspace). Second, the active subspace of 

macroscopic cross section with respect to NEWT is investigated. This subspace will be called 
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as a Sensitivity Subspace (S-Subspace). After that, the intersection subspace in terms of 

BONAMI and NEWT is compared. This subspace will be referred to as a Intersection 

Subspace (I-Subspace). The subspace approach can be expressed physically as shown in 

Table 9-1. Basically, the intersection subspace is intended to capture the component of 

Component 1, i.e. the component of large change and high sensitivity.  

This study focus only on the reduced order modeling, i.e. basis construction for reducing 

input parameters (macroscopic cross sections). Those constructed basis vectors are verified 

by using three methods; singular value spectrum, portion of orthogonal component to active 

subspace and  -metric.  

 

Table 9-1. Subspaces Considered in Intersection Subspace Identification 

 

Macroscopic Cross Section Change 

(Active Subspace due to Resonance Model) 

Large   (very) Small   

Cross Section 

Change Sensitivity  

(Active subspace of 

transport model) 

High Sensitivity Component 1 Component 2 

(very) 

Low Sensitivity 
Component 3 Component 4 
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Resonance Calculation

Transport Calculation

Model Data 

0 , , ,f mT T N

:  self-shielded macro-scopic cross sectionSS

MG

:  neutron fluxMG
 

Figure 9-1. Schematics of Lattice Calculation   
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9.1 BWR Assembly Model  

9.1.1 Overview of Model 

Peach Bottom Atomic Power Station Unit 2 (PB-2) is the 1112MWe Boiling Water 

Reactor (BWR) constructed by General Electric. For the need of uncertainty evaluations for 

Light Water Reactor (LWR) best-estimate calculations, the modeling aspects of uncertainty 

analysis and sensitivity analysis are recognized to be further developed and validated on 

scientific grounds. In consequence, OECD/NEA defined the reference LWR systems and 

scenarios for Uncertainty Analysis in Modeling (UAM) for design, operation and safety 

analysis of LWRs. PB-2 BWR is the first chosen LWR system because it is well documented 

[Ivanov et al. (2007)]. In this study, PB-2 SCALE model is used to study the depletion 

calculation and poison materials (e.g. Gd-155 and Gd-157) effects. Figure 9-2 depicts the 

model analyzed; it is a stand-alone benchmark model designed by OECD/NEA to assess the 

assumptions in current LWR standard lattice physics scheme for generation of few-group 

cross-sections [Ivanov et al., 2007]. The 49 energy group library built by collapsing 238 

energy group library (v7-238) is used and the reference 
effk  is 1.11198246. The PB-2 Type 2 

assembly model with initial fuel is depleted by SCALE6.1 TRITON module. Detailed model 

specifications are listed in Table 9-2 and Table 9-3. 
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Table 9-2. PB-2 Fuel Assembly Data 

Assembly Type 2 

No. of assemblies, initial core 263 

No. of assemblies, Cycle 2 261 

Geometry 7×7 

Assembly pitch, mm 152.4 

Fuel rod pitch, mm 18.75 

Fuel rods per assembly 49 

Water rods per assembly 0 

Burnable poison positions 4 

No. of spacer grids 7 

Inconel per grid, kg 0.225 

Zr-4 per grid, kg 1.183 

Spacer width, cm 4.128 

Assembly average fuel composition: 

Gd2O3, g 

UO2, kg 

 

441 

212.21 

Total fuel, kg 212.65 

 

 

Table 9-3. PB-2 Assembly Design –Type 2 Initial Fuel 

Rod 

Type 

235U 

(wt.%) 

Gd2O3 

(wt.%) 

No. of 

rods 

1 2.93 0 26 

2 1.94 0 12 

3 1.69 0 6 

4 1.33 0 1 

5A 2.93 3.0 3 

6B 2.93 3.0 1 
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Figure 9-2. A 7x7 BWR Benchmark Assembly Model 

 

Reference Depletion Calculation 

For single depletion step calculation, the sequence of BONAMI (resonance self-shielding 

calculation) – NEWT (transport calculation for neutron flux distribution) – ORIGEN (nuclide 

depletion calculation) is conducted. Each depletion step is chosen to 40 days with 40 MW 

power. The k-eff variation due to depletion is shown in Figure 9-3. Interesting behavior is 

the k-eff value increases after about 12 steps (480 days) and after a few steps, starts to 

decrease again. That is because of Gd-155 and Gd-157 which is a strong absorber induces 

high nonlinearity because of its very strong spatial shielding effects [Lee et al. (2009)]. Those 

are depleted in early stage as can be seen in Figure 9-4; thus, in view of neutron economy, 

neutron loss is diminished after their burn-out. Therefore, the multiplication factor starts to 

increase during a few steps but due to U-235 depletion, it decreases again.  
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Figure 9-3. k-eff Change in Reference Depletion Calculation  
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Figure 9-4. Gadolinium Nuclide Density Change due to Depletion 
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9.1.2. V-Subspace Construction 

In this stage, the resonance self-shielded macroscopic cross sections are considered as the 

output responses of the resonance calculation (BONAMI). Note that as the material depleted, 

the fuel materials are decreased while the fission fragments are increased. There can be two 

correlations in the resonance self-shielded macroscopic cross section changes; number 

density and depletion. First, note that the macroscopic cross section is defined as: 

 i i iN   (9.1) 

where 1, ,

T

i i G i
       is a vector of i th nuclide’s macroscopic cross sections, 

1, ,

T

i i G i       is a vector of i th nuclide’s microscopic cross sections, iN  is the 

number density of i th nuclide and G  is the number of energy groups. Therefore, if a number 

density of a nuclide is varied, the whole macroscopic cross sections of the nuclide are 

changed relatively same amount, i.e. changes together in the same direction. Due to 

resonance self-shielding effects, the changes of macroscopic cross sections are not exactly 

same amount but still one can see significant correlation between them. Second, the 

productions of some nuclides are come from other nuclides’ depletion, e.g. fission or decay. 

For example, the uranium materials are only depleted not produced while other fission 

fragments, e.g. Xenon, Samarium, Ruthenium, Technetium, are increased. Therefore, one can 

also see significant correlations between number density changes. With those correlations, 

we expect that the size of the active subspace of the resonance self-shielded macroscopic 

cross section, i.e. V-subspace would be much smaller than its dimension.  
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Sampling Scheme 

Note that the nuclide density change for each isotope due to depletion is calculated by 

reference calculation. Thus, the ranges of nuclide number density changes are already known. 

One can generate the random sample sets simply by random-sampling from the each 

isotope’s number density range. In this study, however, in order to consider the correlations 

due to depletion properly, the special sampling scheme is devised. First, sample the depletion 

step randomly and sample each nuclide’s density from the density range at that depletion step. 

Note that we introduce 20% variations in nuclide densities with respect to the reference case 

to consider more general cases (shaded area in Figure 9-5). The fuel and moderator 

temperatures are randomly perturbed by 10%. 
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Figure 9-5. Sampling Scheme 
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Active Subspace Identification  

The active subspace of the resonance self-shielded macroscopic cross section changes 

due to number density and temperature variations (V-Subspace) is identified by the range 

finding algorithms. For sampling, the special sampling scheme described above is used. 

Identifying the active subspace can be considered as finding patterns in macroscopic cross 

section changes. Once those patterns are extracted, a macroscopic cross section change can 

be represented by a sum of those patterns: 

 
1

r

i i

i

q


   (9.2) 

where iq  for 1,...,i r  are the orthonormal basis of the active subspace, i.e. pattern, i  for 

1,...,i r  are the coefficients and r  is the size of the active subspace. Note that r  is expected 

to be smaller than n  which is the original dimension of the macroscopic cross sections.  

In the PB-2 BWR SCALE model, all nuclides in all mixtures are considered, i.e. 914 

nuclides with 49 energy groups. Thus, the original dimension of the macroscopic cross 

section is 44,786. To implement the range finding algorithm, the nominal configuration is 

specified and then, the random variations from the nominal configuration are examined. The 

nominal configuration 
0N  is determined simply by taking median valued of the maximum 

and minimum nuclide densities for each nuclide as can be seen in Figure 9-6.  
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Figure 9-6. Determination of Nominal Configuration 

 

The 1000 sets of macroscopic cross sections are calculated by executing BONAMI with 

sampled number densities and temperatures. For each calculated macroscopic cross section, 

the relative variation is calculated: 

 

 

 

   

 

0

, , ,

0 0

, ,

k k

i g i g i g

i g i g

  


 
 (9.3) 

where 
 0

,i g  is the i th nuclide and g th energy group macroscopic cross section calculated 

with nominal number density and temperatures and 
 
,

k

i g  is the i th nuclide and g th energy 

group macroscopic cross section calculated with perturbed number densities and 

temperatures.  

The size of the active subspace is investigated by three methods; singular value spectrum, 

portion of orthogonal component to active subspace and  -metric.  
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 Singular Value Spectrum 

The singular value decomposition [Golub & Van Loan (1996)] of a matrix n nA  is 

given by: 

 
1 1

n r
T T

i i i i i i

i i

u v u v 
 

   A UΣV  (9.4) 

where iu  and 
iv  are the orthonormal vectors. Thus, the i  can be considered as the 

importance of the subspace spanned by iu  or iv . As can be seen in Eq. (4.28), by considering 

only components with large importance, one can construct the low-rank approximation of the 

matrix A . We examine the singular value spectrum of the matrix X  which is defined by: 

 
 

 

 

 

1

0 0

k  
  

  
X  (9.5) 

where  0 44,786   is the vector of all macroscopic cross sections at the nominal 

configuration and   44,786k
   is the vector of all macroscopic cross sections at the k th 

perturbed case. Therefore, the element of the matrix X  is the relative change of the 

macroscopic cross section.  

In Figure 9-7, the singular value spectrum of the matrix X  is presented. One can see that 

the singular value spectrum decays gradually and has rapid drop around 900. Note that the 

number of nuclides considered is 914. As explained before, the macroscopic cross sections 

have correlations due to nuclide density. Therefore, with about 900 basis vectors, the major 

variations in the macroscopic cross sections can be represented accurately.  
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Figure 9-7. Singular Value Spectrum of V-Subspace 

 

 Portion of Orthogonal Component 

Given the basis Q , the macroscopic cross section variations can be represented by: 

 
           0 0 0 0 0

T T



       
      

       
= QQ I QQ  (9.6) 

where   is the component in the active subspace and   is the component in the in-

active subspace which is orthogonal to the active subspace. The main idea of the reduced 

order modeling is taking only the active subspace component and discarding the in-active 

subspace component. Thus, the discarded in-active subspace component can be considered as 

error due to reduced order transformation. In order to measure that discarded portion, the root 

mean square (RMS) error for random sample is calculated: 
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     

2

0 0 0
1

1 1
. .

T
n

i

i i

r m s
n n

 



             
                            

  (9.7) 

Test is conducted by following way: 

Step 1. Choose the size of the active subspace ( 50,100,150,...,1000r  ) 

Step 2. Calculate the basis via Range Finding Algorithm with random samples 

Step 3. For additional 10 random samples, calculate the RMS error metric 

Step 4. Take the maximum among the 10 RMS error metrics 

 

The results are shown in Figure 9-8. As the size increases, the RMS error decreases. 

Note that after the size of 900, the RMS error is less than 1%.  
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Figure 9-8. RMS Portion of Orthogonal Component of V-Subspace 
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  -metric 

The previous two approaches are based on completely mathematical sense. However, we 

need to consider the physical meaning of the subspace extracted. Only considering the 

mathematical sense, the subspace construction algorithm tends to discard the directions with 

small variations but physically those directions may have large importance. For example, the 

macroscopic cross section change of moderator material may be small but the output 

responses are very sensitive to them. To ensure the constructed basis capture the physics 

properly, the extra simulation can be used. The  -metric method is examining the effect of 

the component not included in the active subspace. Simply, one can execute the code with 

input parameters perturbed along the direction orthogonal to the active subspace: 

     Ty f f    I QQ  (9.8) 

where f  can be considered as a model, e.g. NEWT, and y  can be any response, e.g. k-

eigenvalue or fluxes. The expected output response changes would be small if the basis is 

constructed correctly.  

The test is conducted by following way: 

Step1. The active subspace basis of the resonance self-shielded macroscopic cross 

section is constructed by the range finding algorithm with BONAMI executions: Q  

Step 2. The resonance self-shielded macroscopic cross sections at every depletion steps 
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are collected:  i
  for 1,..., depletioni n  

Step 3, The variations of those macroscopic cross sections from the nominal 

configuration are calculated: 
 

 0

i



 for 1,..., depletioni n  

Step 4, The orthogonal components to the active subspace are calculated by projection: 

 
 

 0

i

T 



I QQ  for 1,..., depletioni n  

Step 5, The transport solver (NEWT) is executed with those orthogonally perturbed 

macroscopic cross sections: 
          0 0i iTy y f     I QQ  for 1,..., depletioni n  

Step 6, Check the changes in response, e.g. k-eff, fluxes and homogenized few group 

cross sections:  
 i

y  for 1,..., depletioni n  

 

First, the k-eff changes due to macroscopic cross section perturbation orthogonal to the 

active subspace are examined in Figure 9-9. Note that the original k-eff value changes are 

shown in Figure 9-3 in which the k-eff values are varied from -1776 to 14215 [pcm]. As 

increasing the basis, the more components of the macroscopic cross section variations are 

captured; thus, the k-eff changes due to the components which are not included in the active 

subspace are decreased. With 1000 basis vectors, the k-eff changes are a few pcm, which are 

very small considering the computation precision (single precision) and convergence criteria 

( 510 ).  
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Figure 9-9. k-eff Change due to Macroscopic Cross Section Orthogonal Perturbation 

 

Next, the flux changes due to the orthogonal perturbation are examined in Figure 9-10 

and Figure 9-11. In both cases, the flux changes due to in-active subspace components are 

decreased as the size of basis is increased. With 1000 basis, the flux changes are mostly less 

than 0.01%. It is important to note that there are very large flux changes in thermal region 

with Gadolinium (Figure 9-11). Especially, after Gd-155 and Gd-157 are burnt-out (after 

400days), one can see more than 100% thermal flux changes due to large macroscopic cross 

section variations. However, the constructed basis can capture those variations properly.  
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Figure 9-10. Flux Change due to Macroscopic Cross Section Orthogonal Perturbation  

(fuel pin) 
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Figure 9-11. Flux Change due to Macroscopic Cross Section Orthogonal Perturbation 

(fuel + Gadolinium pin) 
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Lastly, the assembly homogenized two group collapsed macroscopic cross sections are 

examined. In Figure 9-12, the total cross section t , the absorption cross section a , the 

nu*fission cross section f , the elastic scattering cross section s , the capture cross section 

c  and the diffusion coefficient D  are presented. One can see the same behavior of the cross 

section changes according to the size of the active subspace.  
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Figure 9-12. Few-Group Cross Section Change  

due to Macroscopic Cross Section Orthogonal Perturbation   
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9.1.3. S-Subspace Construction 

The macroscopic cross section can be considered as input parameters to transport solver, 

i.e. NEWT and the active subspace of macroscopic cross section can be defined as sensitive 

components with respect to NEWT. It can be identified by examining sensitivity coefficient 

profiles (first order derivatives at the random configuration) with the range finding algorithm. 

Due to higher order (nonlinear) effects because of large macroscopic cross section variations, 

the size of the active subspace is expected to be very large; thus, the singular value spectrum 

decays gradually and slowly. Note that the first order derivative calculation via adjoint 

perturbation theory requires three calculations; one fundamental mode forward run, one 

fundamental mode adjoint run and one general perturbation theory mode adjoint run. 

Therefore, sampling a large number of derivatives is not a preferred option in computational 

and practical view points.  

To estimate the size of the active subspace, the singular value spectrum is examined. For 

the random samples, the maximum macroscopic cross sections and the minimum 

macroscopic cross sections for each isotope over the entire depletion steps are collected and 

random configurations are sampled between those maximum and minimum values to ensure 

the complete coverage of the parameter domain. The matrix S  is constructed by: 

 

   

   

1

1

 

               or    

k

eff eff

eff eff

k
pseudo pseudo

pseudo pseudo

k k

k k

R R

R R

    
  
 

    
 

   

S

S

 (9.9) 
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where 
eff

eff

k

k




 is a relative k-eff sensitivity coefficient vector and 

pseudo

pseudo

R

R

 


 is a 

relative pseudo response sensitivity coefficient vector. Note that the pseudo response is 

defined as: 

 
, ,

1 1

groupmixture
nn

pseudo

m g m g

m g

R  
 

    (9.10) 

where ,m g  is a scalar flux for the mixture m  and the energy group g  and ,m g  is the flux 

weighted random number. The singular value spectrum of the matrix S  for 1000 samples is 

shown in Figure 9-13. One can see that the singular value spectrum decreases very slowly 

which implies that the size of active subspace would be much larger than 1000.  
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Figure 9-13. Singular Value Spectrum of Random Sensitivity Coefficient Matrix 
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9.1.4. I-Subspace Construction 

Now we have examined two active subspaces;  

- V-active subspace of macroscopic cross section as outputs of BONAMI  

  (nuclide density and temperature perturbation and resonance self-shielding calculation) 

- S-active subspace of macroscopic cross section as inputs of NEWT  

  (transport model sensitivity) 

The previous result shows that the size of the S-active subspace of the macroscopic cross 

section as outputs of BONAMI would be 1000. This implies that the macroscopic variations 

can be accurately represented by 1000 basis vectors. On the other hand, the size of S-active 

subspace as inputs is expected to be large and it is unaffordable to conduct the GPT adjoint 

calculations very many times. However, it is obvious that the sensitivity information can be 

combined to macroscopic variations so that we can extract the components with large 

variations (V-Subspace) and high sensitivity (S-Subspace). The resulting size of intersection 

active subspace (I-Subspace) would be smaller than 1000. The intersection subspace is 

identified via the range finding algorithm with samples defined by: 

    or    
pseudo

effT T

pseudo

eff

k R

k R

  

 
QQ QQ  (9.11) 

where Q  is the matrix of which columns are orthonormal basis vectors of macroscopic cross 

section variations. To estimate the size of the intersection subspace and error due to reduced 

order transformation, the singular value spectrum, portion of orthogonal component to active 

subspace and  -metric are investigated. 
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 Singular Value Spectrum 

The singular value spectrum of intersection subspace is shown in Figure 9-14. Two 

spectrums of the intersection subspaces are compared to the subspace only of the 

macroscopic cross section variations. Note that the singular values of the intersection 

subspaces with k-eff sensitivity and flux sensitivity are calculated by singular value 

decomposition: 

 

   1

eff

k

eff effT

k

eff eff

k k

k k

    
  
 

X QQ  (9.12) 
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T

flux pseudo pseudo

R R

R R

    
 

   

X QQ  (9.13) 

where 
44786 1000Q  is the orthonormal basis of V-Subspace.  

One can see that the singular value spectrums of the intersection subspaces decay faster 

than the one of V-Subspace. This implies that the further reduction would be achieved.  

 



www.manaraa.com

 

217 

0 100 200 300 400 500 600 700 800 900 1000
1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

 

 

N
o

rm
a
li

z
e
d

 S
in

g
u

la
r 

V
a
lu

e

Singular Value Index

 Macroscopic XS Variation Subspace

 Intersection Subspace (k-eff)

 Intersection Subspace (flux) 

 

Figure 9-14. Singular Value Spectrum of Intersection Subspace  

 

 Portion of Orthogonal Component 

Given the basis of the macroscopic cross section variation and the sensitivity samples, the 

basis of the intersection subspace can be constructed by the range finding algorithm with: 
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Q QQ  (9.15) 

In order to measure that discarded portion, the root mean square (RMS) error for random 

sample is calculated by: 
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where 
     intersection intersection0 0

T



    
    

    
I Q Q .  

In Figure 9-15, the results are compared. Note that with smaller sensitivity samples, the 

more components are discarded because those are considered as in-sensitive with respect to 

the response changes, i.e. k-eff or fluxes. As considering more sensitivity subspace, the 

intersection subspace would be closer to the macroscopic cross section variation subspace, i.e. 

the subspace spanned by Q . 
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Figure 9-15. RMS Portion of Orthogonal Component of Intersection Subspace 
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  -metric 

First, the  -metric test for the intersection subspace with k-eff sensitivity is conducted. 

For the intersection subspace construction, it is assumed that the V-Subspace is represented 

by 1000 basis, i.e. 44786 1000Q , and the intersection subspaces spanned by 400, 600 and 

800 basis are compared to the case of V-Subspace.  
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Figure 9-16. k-eff Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Intersection Subspace with k-eff Sensitivity, r=400) 
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Figure 9-17. k-eff Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Intersection Subspace with k-eff Sensitivity, r=600) 
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Figure 9-18. k-eff Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Intersection Subspace with k-eff Sensitivity, r=800) 
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Second, the  -metric test for the intersection subspace with flux sensitivity is conducted. 

For the intersection subspace construction, the macroscopic cross section variation is 

represented by 1000 basis, i.e. 44786 1000Q , and the intersection subspaces spanned by 400, 

600 and 800 basis are compared to the case of V-Subspace. In Figure 9-19 ~ 21, the  -

metric test on the flux changes are conducted for fuel pin. In Figure 9-22 ~ 24, the  -metric 

test on the flux changes are conducted for fuel pin with Gadolinium. Note that as the 

subspace size increases, the flux changes decrease which means the effects by the in-active 

components are diminished. Also, compared to the case of considering V-Subspace, the 

intersection subspace approach requires a smaller number of subspace basis vectors. 

Therefore, with the same number of basis vectors, the intersection subspace approach would 

product more accurate reduced order transformation. Or with the same error tolerance criteria, 

the intersection subspace approach requires a smaller number of basis vectors (i.e. more 

reduction).  
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Figure 9-19. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel Pin, Intersection Subspace with Flux Sensitivity, r=400) 
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Figure 9-20. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel Pin, Intersection Subspace with Flux Sensitivity, r=600) 
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Figure 9-21. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel Pin, Intersection Subspace with Flux Sensitivity, r=800) 
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Figure 9-22. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel + Gadolinium Pin, Intersection Subspace with Flux Sensitivity, r=400) 
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Figure 9-23. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel + Gadolinium Pin, Intersection Subspace with Flux Sensitivity, r=600) 

 

  



www.manaraa.com

 

227 

 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 

 
R

e
la

ti
v

e
 F

lu
x

 C
h

a
n

g
e
 @

 4
0

d
 [

%
]

Energy [eV]

 Actual Change

 Orthogonal to V-Subspace

 Orthogonal to I-Subspace

 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 

 

R
e
la

ti
v

e
 F

lu
x

 C
h

a
n

g
e
 @

 2
0

0
d

 [
%

]

Energy [eV]

 Actual Change

 Orthogonal to V-Subspace

 Orthogonal to I-Subspace

 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 
 

R
e
la

ti
v

e
 F

lu
x

 C
h

a
n

g
e
 @

 4
0

0
d

 [
%

]

Energy [eV]

 Actual Change

 Orthogonal to V-Subspace

 Orthogonal to I-Subspace

 

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 

 

R
e
la

ti
v

e
 F

lu
x

 C
h

a
n

g
e
 @

 8
0

0
d

 [
%

]

Energy [eV]

 Actual Change

 Orthogonal to V-Subspace

 Orthogonal to I-Subspace

 
Figure 9-24. Flux Changes due to Macroscopic Cross Section Orthogonal Perturbation 

(Fuel + Gadolinium Pin, Intersection Subspace with Flux Sensitivity, r=800) 
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Third, the  -metric test for the intersection subspace with flux sensitivity is conducted. 

For the intersection subspace construction, the macroscopic cross section variation is 

represented by 1000 basis, i.e. 44786 1000Q , and the intersection subspaces spanned by 400, 

600 and 800 basis are compared to the case of V-Subspace. In Figure 9-25 ~ 27, the  -

metric test results for few-group constants are shown and the same behavior with the 

previous tests can be observed, which implies that the intersection subspace approach can 

achieve the further reduction.  
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Figure 9-25. Few Group Cross Section Changes due to Macroscopic Cross Section 

Orthogonal Perturbation (r=400) 
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Figure 9-26. Few Group Cross Section Changes due to Macroscopic Cross Section 

Orthogonal Perturbation (r=600) 
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Figure 9-27. Few Group Cross Section Changes due to Macroscopic Cross Section 

Orthogonal Perturbation (r=800) 
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In addition to  -metric test in which the output response change due to in-active 

subspace components is examined, one more test is conducted to verify the constructed basis. 

The test procedure is the following: 

Step 1) Generate 100 random cases with perturbing number densities and temperatures 

Step 2) Calculate the k-eff changes due to perturbed parameters: 
 

 

 
0

,
i

i

effk
 

   
 for 

1,...,100i    

Step 3) Project the macroscopic cross section variations onto the intersection subspace 

and Calculate the k-eff changes: 
 

 

 
intersection intersection ,0

,
i

iT

eff i subk 

 
   

Q Q  for 1,...,100i   

Step 4) Compare the two 
effk  changes, i.e. 

 i
effk  and 

 
,

i

eff i subk   for 1,...,100i   

 

The test is conducted with BWR assembly model (PB-2) and as the intersection subspace 

basis, 800 I-Subspace basis with 1000 V-Subspace basis is used, i.e. 44786 800

intersection

Q . In 

Figure 9-28, the comparison for k-eff changes for 10 random cases is presented. As can be 

seen, the k-eff changes due to macroscopic cross section perturbed along the intersection 

subspace are not much different with the actual k-eff changes. In Table 9-4, the frequency 

distribution table for 100 test cases is shown. Overall, two k-eff changes show similar 

distributions: 0.405 [pcm] average discrepancy and 51.923 [pcm] standard deviation. One 

can notice that there is a difference in range of 0~5000 (-5000~0) which is due to the sign of 
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the k-eff changes are different though the magnitude of the discrepancy is small ( effk

=43.476 [pcm] and ,eff i subk  =-1.279 [pcm]). 
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Figure 9-28. Comparison of k-eff Changes 

 

Table 9-4. Comparison of k-eff Changes 

Range [pcm] 
Actual Perturbation 

( effk ) 

I-Subspace Perturbation 

( ,eff i subk  ) 

-10000 ~ -5000 7 7 

-5000 ~ 0 13 14 

0 ~ 5000 27 26 

5000 ~ 10000 25 25 

10000 ~ 15000 21 21 

15000 ~ 20000 5 5 

25000 ~ 30000 1 1 

30000 ~ 35000 1 1 
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9.2 PWR Assembly Model  
 

9.2.1 Overview of Model 

The Watts Bar Unit 1&2 reactor core is the typical four-loop Westinghouse pressurized 

water reactor (PWR) which is comprised of 193 assemblies arranged in core loading 

configuration shown in Figure 9-29. The general specifications can be found in Wagner and 

Parks (2003) and Godfrey (2011). In Figure 9-30, the original SCALE model originally 

provided by Godfrey is shown.   

 

 
 

Figure 9-29. Loading Pattern & Burnable Poison Patterns  

– Quarter Core without Source Location  
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Figure 9-30. Watts-Bar Unit 2 SCALE Model for Criticality Calculation 

 

9.2.2 Model Modification 

The original SCALE model by Godfrey (2011) is for criticality calculation. For the 

purpose of this study, the model is modified: 

 Modification 1): for depletion calculation, each fuel pin-cell is assigned unique 

material identification number to capture the burn-up effects.  

 Modification 2): to model the different assembly types only by changing material 

compositions, burnable poison rods (BPRs) are modeled in homogeneous manner. 

 Modification 3): to keep the execution time manageable, the diagonally symmetric 

properties of the assembly are considered so that the number of mixture numbers are 

reduced.  

 Modification 4): to keep the execution time manageable, BONAMI is used for 

resonance calculation instead of default resonance calculation option (i.e. CENTRM). 
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For Modification2), the burnable poison rods data is additionally collected and 

summarized below. According to Wagner and Parks (2003), there are two types of BPRs 

designs for Westinghouse fuel assembly 

- Pyrex Burnable Absorber Assemblies (BAAs) 

- Wet Annular Burnable Absorbers (WABAs) 

In this study, only BAA is considered (no WABA, no source). The specification of BAA is 

summarized in Table 9-5 and Table 9-6.   

It is observed that compared to CENTRM (default option of TRITON module), 

BONAMI is much faster but shows unphysical criticality result (more than 4000 pcm 

difference). For Modification 4), the problem specific library is generated by collapsing 238 

group library to 49 groups, i.e. 5 more groups are added into resonance region to 44 energy 

group library.  

Considering the fuel enrichments and BPR insertions, the 10 assembly models are shown 

in Figure 9-31. The red circles show the location of guide tube in which the BPR is inserted. 

To model the rod insertion by perturbing the material density, the inside of the guide tube is 

modeled as one mixture (homogenized). With this model, one can model the poison rod 

insertion by increasing poison material densities. 
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Table 9-5. Burnable Absorber Assembly Geometry Specification 

void

C
lad (S

tainless S
teel)

B
urnable A

bsorber (B
2O

4+S
iO

2)
void

void

C
lad (S

tainless S
teel)

0.213995

0.230505

0.2413

0.42672

0.43688

0.48387

 

Description BAA 

BP material B2O3-SiO2 

Boron Loading 12.5 wt% B2O3 

0.00624g B10/cm 

BP density (g/cm3) 2.299 

BP outer diameter(OD) 

(cm) 

0.85344 

BP inner diameter (ID) 

(cm) 

0.48260 

BPR clad material Stainless Steel (Type 

304) 

BPR outer clad OD (cm) 0.96774 

BPR outer clad ID (cm) 0.87376 

BPR inner clad OD (cm) 0.46101 

BPR inner clad ID (cm) 0.42799 
 

 

Table 9-6. Burnable Absorber Assembly Material Specification 

Description Material ID Nuclide Number Density 

Clad ss304 Standard Material Property 

BAA o 

na 

al 

si 

k 

b-10 

b-11 

0.04497 

0.00165 

0.00058 

0.01799 

0.00011 

9.595E-4 

3.863E-3 

Gap n 5.000E-5 
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No. Region Enrich No. BPRs File Name 

1 1 2.1 0 triton_R1_P0.inp 

2 2 2.6 0 triton_R2_P0.inp 

3 2 2.6 16 triton_R2_P16.inp 

4 2 2.6 20 triton_R2_P20.inp 

5 2 2.6 24 triton_R2_P24.inp 

6 3 3.1 0 triton_R3_P0.inp 

7 3 3.1 12 triton_R3_P12.inp 

8 3 3.1 16 triton_R3_P16.inp 

9 3 3.1 24 triton_R3_P24.inp 

10 3 3.1 8 triton_R3_P8.inp 

Figure 9-31. Modified Assembly Model  

 

9.2.3 V-Subspace Construction 

The macroscopic cross section changes due to material composition changes and 

fuel/moderator temperature change. The basis construction for the macroscopic cross section 

variations can be interpreted as capturing the pattern in macroscopic cross section changes. 

The range finding algorithm (RFA) can be used to construct the orthogonal basis, which is 

running the resonance model with perturbed material composition and temperatures and 

Gram-Schmidt orthonormalization-process to resulting macroscopic cross section vectors.  

 

Sampling Scheme 

To get the ranges of nuclide densities to be considered (we don’t need to consider the 

number density from zero to infinity), the depletion calculations for each assembly model are 

conducted with varying fuel/moderator temperature. For every assembly types, the fuel 
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temperature is perturbed by 40% uniform distribution and the moderator temperature and 

moderator density are perturbed simply by 10% uniform distribution.  The nominal number 

density for each mixture is determined as the median value. In Figure 9-32, the number 

density of U-235 in a pin-cell is plotted and how to determine the nominal value 0N  and 

range of variation N  is illustrated.  
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Figure 9-32. Determination of Number Density Variation Range  

 

In this study, the randomized approach is adopted to generate the samples for subspace 

construction. To eliminate the unphysical condition (e.g. high uranium enrichment and high 

plutonium concentration) and make the sample configuration physically reasonable, the 

special sampling scheme is used. As illustrated in Figure 9-33, the number densities are 

perturbed by;  



www.manaraa.com

 

246 

1. the maximum (and minimum) number densities at each depletion step are 

collected and fitted by 5
th

 order polynomial regression analysis.  

2. randomly sample the depletion step and calculate the max and min number 

densities by fitted functions.  

3. sample the perturbed number density between the max and the min number 

densities.  
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Figure 9-33. Determination of Perturbed Number Density 

 

Basis Verification 

To verify the basis, three methods are considered; singular value spectrum, portion of 

orthogonal component to active subspace and  -metric. The first two approaches are almost 
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free but only have mathematical meaning, while the  -metric approach shows the actual 

error due to reduced order transformation but requires extra model executions.  

 

 Singular Value Spectrum 

Consider the matrix X  of which the columns are the vectors of macroscopic cross 

sections calculated from resonance calculations with perturbed number densities and 

temperatures:  

 
   1 2   

 
X  (9.17) 

The singular value decomposition of the matrix X  is given by: 

 
1

T

i i i

i

u v


 X USV =  (9.18) 

where iu  and 
iv  are the orthonormal vectors. Thus, the i  can be considered as the 

importance of the subspace spanned by iu  or iv . 

In Figure 9-34, the singular value spectrum of the matrix X  is presented. Note that the 

original input parameter (i.e. macroscopic self-shielded cross section) dimension is 

184,240 and there are 3,760 nuclides in 45 mixtures. It is important to note that around 3,800 

index, the singular value drops rapidly. That is because there are 3,760 nuclides and 

macroscopic cross sections are highly correlated by number density. In other words, if the 

number density of a nuclide is changed, the 49 macroscopic cross sections (49 energy group) 

of the nuclide are changed mostly together. Due to the resonance effect depending on the 
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temperature, those 49 values are not completely correlated so after 3,800, the singular value 

spectrum is still decaying gradually.  
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Figure 9-34. Singular Value Spectrum of Macroscopic Cross Sections  

 

 Portion of Orthogonal Component 

Given the basis Q , the macroscopic cross section variations can be represented by: 

 
           0 0 0 0 0

T T



       
      

       
= QQ I QQ  (9.19) 

where   is the component in the active subspace and   is the component in the in-

active subspace which is orthogonal to the active subspace. The main idea of the reduced 

order modeling is taking only the active subspace component and discarding the in-active 

subspace component. Thus, the discarded in-active subspace component can be considered as 
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error due to reduced order transformation. In order to measure that discarded portion, the root 

mean square (RMS) error for random sample is calculated: 

 
     

2

0 0 0
1

1 1
. .

T
n

i

i i

r m s
n n

 



             
                            

  (9.20) 

Test is conducted by following way: 

Step 1) Choose the size of the active subspace ( ) 

Step 2) Calculate the basis 

Step 3) For additional 10 random samples, calculate the RMS error metric 

Step 4) Take the maximum among all RMS error metrics 

 

In Figure 9-35, the error metric spectrum is presented. Like the singular value spectrum, 

around 3,800, the large drop is observed.  
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Figure 9-35. RMS Portion of Orthogonal Component of V-Subspace 

100,200,300,...,5000r 



www.manaraa.com

 

250 

 

  -metric 

The previous two approaches are based on completely mathematical sense. However, we 

need to consider the physical meaning of the subspace. Only considering the mathematical 

sense, the subspace construction algorithm tends to discard the directions with small 

variations but physically those directions may have large importance. For example, the 

macroscopic cross section change of moderator material may be small but the output 

responses are very sensitive to them. To ensure the constructed basis capture the physics 

properly, the extra simulation can be used.  -metric method is examining the effect of the 

component not included in the active subspace. Simply, one can execute the code with input 

parameters perturbed along the direction orthogonal to the active subspace: 

     Ty f f    I QQ  (9.21) 

where f  can be considered as transport solver and y  can be any response, e.g. k-eigenvalue 

or fluxes. The expected output response change would be small if the basis is constructed 

correctly.  

The test is conducted by following procedure: 

1. the test case is chosen (No. 5 assembly type (2.6% enrichment with 24 BPRs) and No. 

6 assembly type (3.1% enrichment without BPR)) 

2. complete the depletion calculation and prepare the actual macroscopic cross section 

data 

3. project the actual macroscopic cross section data onto the in-active subspace 
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4. execute the simulation code (NEWT in SCALE6.1) with the projected cross section 

data 

5. check the change of response interested 

In Figure 9-36, the k-eigenvalue changes are plotted. The k-eigenvalues are changed 

from 5224 pcm to -10927 pcm with respect to the nominal status (0.88233491). The 

macroscopic cross sections are collected at each depletion step and projected onto the in-

active subspace. In Figure 9-37, the k-eigenvalue changes are presented according to the size 

of active subspace, i.e. 1000, 2000, 3000, 4000 and 5000. As can be seen, the response 

changes due to in-active subspace components are getting smaller, which means the basis can 

capture the behavior of the macroscopic cross section changes more accurately. After 4,000, 

the results seem saturated as expected with consideration of the convergence criteria of k-

eigenvalue, inner&outer iterations and mesh size for pincell calculations. In Figure 9-38 and 

Figure 9-39, the  -metric tests are conducted to the fluxes in a fuel pincell for No. 6 

Assembly Type and No. 5 Assembly type, respectively. Same with before, as the size of 

active subspace increases, the effects from the in-active subspace decreases. Note that due to 

mesh sizing and resonance effects, some energy groups have inferior behavior. In Figure 9-

40 and Figure 9-41, the  -metric tests are conducted for Few-group constants.  

In this study, considering the convergence criteria of the transport solver and precision of 

cross section library, the active subspace size is assumed to 5,000 for intersection subspace 

construction. 



www.manaraa.com

 

252 

0 5000 10000 15000 20000 25000 30000

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000  3.1% Enrichment with 0 BPR

 2.6% Enrichment with 24 BPRs

 

 

k
-e

ff
 c

h
a
n

g
e
 [

p
c
m

]

Burnup (MWd/MTIHM)

 

Figure 9-36. k-eff change due to fuel material depletion 
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Figure 9-37.  -metric test for k-eff with V-Subspace 
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Figure 9-38.  -metric test for fluxes with V-subspace (3.1% enrichment without BPR)  
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Figure 9-39.  -metric test for fluxes with V-subspace (2.6% enrichment with 24 BPRs)  
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Figure 9-40. -metric test for Few-Group Constants with V-subspace  

(3.1% enrichment without BPR) 
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Figure 9-41. -metric test for Few-Group Constants with V-subspace 

(2.6% enrichment with 24 BPRs)  
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9.2.4 I-Subspace Construction 

The components of large variations extracted previously with resonance active subspace 

can be reduced by considering only components with high sensitivity. The sensitive 

components can be captured by examining the sensitivity profiles by adjoint sensitivity 

analysis and by projecting them onto the V-Subspace, one can finally identify the 

components in large variation and high sensitivity: 

 

   1 k

eff effT

eff eff

k k

k k

    
  
 

QQ  (9.22) 

 

   1 k
pseudo pseudo

T

pseudo pseudo

R R

R R

    
 

   

QQ  (9.23) 

where 184240 5000Q  is the orthonormal basis of V-Subspace.  

In Figure 9-42 and Figure 9-43, the normalized singular value spectrum is compared. As 

can be seen, the spectrum of intersection is decaying faster than the case of V-active 

subspace. It means that 1) with same size of active subspace, intersection approach would be 

more accurate (capture the influential subspace more efficiently), 2) with same error 

tolerance criteria, intersection approach would produce the smaller size of basis (further 

reduction). In Figure 9-44, the  -metric test with intersection subspace is presented. One 

can see that the error in transformation to 2,000 dimension would result in only a few tenth of 

pcm changes out of several thousands of k-eff actual changes. Also, in Figure 9-45 ~ Figure 

9-48, the  -metric test results are shown. One can notice that 2000 intersection basis can 

represent the macroscopic cross section variations and sensitivities pretty accurately.  
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Figure 9-42. Comparison of Singular Value Spectrum  
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Figure 9-43. RMS Portion of Orthogonal Component of I-Subspace  
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Figure 9-44.  -metric test for k-eff with intersection active subspace 
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Figure 9-45.  -metric test for fluxes with intersection active subspace  

(3.1% Enrichment without BPR) 
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Figure 9-46.  -metric test for fluxes with intersection active subspace  

(2.6% Enrichment without 24 BPRs) 
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Figure 9-47. -metric test for Few-Group Constants with I-Subspace  

(3.1% enrichment without BPR)  





www.manaraa.com

 

267 

   

0 5000 10000 15000 20000 25000 30000

1E-4

1E-3

0.01

0.1

1

10

100

1000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

F
as

t 
G

ro
u

p
 T

o
ta

l 
C

ro
ss

 S
ec

ti
o

n
 [

%
]

Burnup (MWd/MTIHM)

 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

0 5000 10000 15000 20000 25000 30000

1E-4

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 T

o
ta

l 
C

ro
ss

 S
ec

ti
o

n
 [

%
]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

F
as

t 
G

ro
u

p
 A

b
so

rp
ti

o
n

 C
ro

ss
 S

ec
ti

o
n

 [
%

]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 A

b
so

rp
ti

o
n

 C
ro

ss
 S

ec
ti

o
n

 [
%

]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-4

1E-3

0.01

0.1

1

10

100

1000

 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

F
as

t 
G

ro
u

p
 N

u
F

is
si

o
n

 C
ro

ss
 S

ec
ti

o
n

 [
%

]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 N

u
F

is
si

o
n

 C
ro

ss
 S

ec
ti

o
n

 [
%

]

Burnup (MWd/MTIHM)

 
 

 



www.manaraa.com

 

268 

 

0 5000 10000 15000 20000 25000 30000

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 
R

el
at

iv
e 

C
h

an
g

e 
o

f 
F

as
t 

G
ro

u
p

 S
ca

tt
er

in
g

 C
ro

ss
 S

ec
ti

o
n

 [
%

]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-4

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 S

ca
tt

er
in

g
 C

ro
ss

 S
ec

ti
o

n
 [

%
]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

F
as

t 
G

ro
u

p
 C

ap
tu

re
 C

ro
ss

 S
ec

ti
o

n
 [

%
]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

0.01

0.1

1

10

100

1000

 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 C

ap
tu

re
 C

ro
ss

 S
ec

ti
o

n
 [

%
]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-3

0.01

0.1

1

10

100

1000

 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

F
as

t 
G

ro
u

p
 D

if
fu

si
o

n
 C

o
ef

fi
ci

en
t 

[%
]

Burnup (MWd/MTIHM)

 

0 5000 10000 15000 20000 25000 30000

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

1000
 Actual Change

 Orthogonal r=500

 Orthogonal r=1000

 Orthogonal r=1500

 Orthogonal r=2000

 

 

R
el

at
iv

e 
C

h
an

g
e 

o
f 

T
h

er
m

al
 G

ro
u

p
 D

if
fu

si
o

n
 C

o
ef

fi
ci

en
t 

[%
]

Burnup (MWd/MTIHM)

 

 



www.manaraa.com

 

269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-48. -metric test for Few-Group Constants with I-Subspace  

(2.6% enrichment with 24 BPRs)   


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9.3 Discussion 

In this chapter, the proposed reduced order modeling with the intersection subspace 

approach via the range finding algorithm is implemented to examine the its performance for 

highly nonlinear and very large scale problems, i.e. PB-2 BWR assembly and WB-2 PWR 

assembly model. The assembly calculation is considered as a serially coupled model and 

relationships between two models, i.e. BONAMI and NEWT, are investigated. Overall, it is 

shown that the intersection approach can achieve the further reduction compared to only 

considering the macroscopic cross section variations due to perturbation of nuclide number 

densities and temperatures and resonance self-shielding calculation (V-subspace) with 

respect to the calculation precision: 

- single precision (6 significant digits for ENDF cross section library) 

- Transport solver convergence criteria (
510
 for BWR model, 

410
 for PWR model) 

In Table 9-7, the summary of the dimensionality reduction is presented. One can notice 

that by using subspace methods, one can construct the orthogonormal basis for the 

dimensionally reduced representation of the macroscopic cross section while minimizing the 

reduced order transformation error. Note that one can construct more accurate reduced order 

representation by increasing the size of the subspace.  
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Table 9-7. Summary of Reduced Order Modeling 

  PB-2 BWR WB-2 PWR 

Original Dimension 44,786 184,240 

Reduced Dimension  

(V-Subspace) 

1,000 

(2.23% of original dim.) 

5,000 

(2.71% of original dim.) 

Reduced Dimension 

(I-Subspace) 

600 

(1.34% of original dim.) 

2,000 

(1.09% of original dim.) 

 

Note that the error in the surrogate modeling with reduced order transformed input 

parameters can have two sources of error: 

- Error from Reduced Order Modeling (
ROM ) 

- Error from Surrogate Modeling (
SM ) 

It is important to estimate the error due to reduced order modeling because it will propagate 

to the surrogate modeling step and may determine the surrogate modeling accuracy. To get a 

rough estimate of the error tolerance, a simple test is conducted in which all few group 

constants are perturbed randomly by 5% and 10% and check the k-eff changes calculated by 

core simulator (NESTLE) due to those perturbations. The reference k-eff is 1.003451 and 

100 random cases are generated. Note that all few group constants’ 5% perturbation results in 

only a few tenth of pcm difference. With regard to the  -metric tests in the previous 

sections, the error due to reduced order transformation was less than 1% (mostly less than 

0.1% for BWR case). Thus, the reduced order modeling conducted in this study can be 

considered reasonably accurate with respect to final core simulator calculation results.  
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Figure 9-49. k-eff changes due to Random 5% FG constants Perturbation 
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Figure 9-50. k-eff changes due to Random 10% FG constants Perturbation 
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To estimate the surrogate model form, a simple linearity test is conducted. This is 

important because, as the model is highly nonlinear, the surrogate model should be the high 

order form. Test is conducted in the following way: 

 

Step 1) the each macroscopic cross section’s maximum value and minimum value for 

entire depletion range are collected:  and  for isotope  and energy  

Step 2) the reference perturbation is generated by perturbing within those maximum 

and minimum values:  

       where  is randomly generated number 

 

Step 3) the reference perturbation is increased by multiplying integer numbers: 

 where  

Step 4) NEWT is executed with the perturbed macroscopic cross section library. 

 

With this perturbation scheme, one can perturb only in one direction so that it makes 

easier to analyze the nonlinearity. In Figure 9-51, the k-eff changes of PB-2 BWR assembly 

model due to macroscopic cross section perturbation is presented. Those k-eff values are 

fitted by polynomial regression analysis with several different orders and the goodness-of-fit 

( 2R ) is compared in Table 9-8. One can notice that the k-eff change is from -101 pcm to -

1699 pcm which is relatively smaller than the one considered in depletion calculation but 

max

,i g min

,i g i g

   0 max min

, , ,i g i g i g      

0.05 0.05   

   0

, ,

k

i g i g k    1,...,20k 
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second and third order polynomial regression analysis show pretty large discrepancy. This 

proves that the output response change would be nonlinear and more than fourth order would 

be required to accurately predict the response changes. Note that though the original inputs 

are reduced much, the reduced inputs are still too large to build a surrogate model with 

existing conventional surrogate modeling methods. Building a surrogate model for such a 

high dimensional model would be left for future works.   
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Figure 9-51. k-eff Changes due to One Direction Perturbation 
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Table 9-8. Goodness-of-Fit Comparison of Different Polynomial Regression Order  

Perturbation 
Polynomial Regression Analysis Estimation Discrepancy [pcm] 

Second Order  Third Order  Fourth Order  Fifth Order  

1 34.9563 -7.3629 1.2979 -0.2123 

2 15.4043 -0.1869 -0.6431 0.2324 

3 0.1152 3.8276 -1.1871 0.2185 

4 -11.1121 5.3528 -0.9132 0.0402 

5 -18.5216 5.0184 -0.2868 -0.1403 

6 -22.3573 3.4537 0.3831 -0.2173 

7 -22.9461 1.2053 0.8608 -0.1918 

8 -20.6032 -1.1685 1.0791 -0.0436 

9 -15.8924 -3.3581 0.8783 0.0401 

10 -9.1328 -4.8091 0.4999 0.1919 

11 -1.0515 -5.3750 -0.0660 0.2435 

12 7.6118 -4.9223 -0.6859 0.1537 

13 16.1278 -3.3066 -1.0590 0.0652 

14 23.3306 -0.8205 -1.1649 -0.1109 

15 28.0052 2.1946 -0.8760 -0.2742 

16 28.6957 5.1560 -0.1491 -0.2942 

17 23.5910 7.1263 0.8603 -0.0917 

18 10.4110 6.6990 1.6843 0.2801 

19 -13.8201 1.7714 1.3152 0.4412 

20 -52.8124 -10.4930 -1.8321 -0.3204 

Goodness-of-Fit 

 (
2R ) 

9.981487E-01 9.999102E-01 9.999964E-01 1.000000E+00 
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CHAPTER 10. CONCLUSION 

 

Thanks to the startling increase in computer power, much more complex nuclear reactor 

models can now be simulated. In addition, the accuracy of the simulation has been greatly 

improved with detailed physical models, sophisticated numerical scheme with better stability 

and less discretization errors and reduced uncertainty in model parameters. Over the past 

decades, a number of initiatives were proposed to improve further the accuracy of the 

simulation via the use of detailed first-principles type models to eliminate the underlying 

assumptions and approximations. Furthermore, it has become essential to defend the 

simulation results in a rigorous manner, i.e. via the use of a comprehensive uncertainty 

analysis. To realize the benefits of these initiatives in real engineering design where day-to-

day decisions need to be made swiftly based on simulation results, the efficiency of the 

simulation has become an important consideration.  

The objective of this dissertation is to reduce the computational cost in utilizing the 

high-fidelity computer simulation tools for sensitivity analysis, uncertainty quantification 

and design optimization. To achieve that, the reduced order modeling was introduced. The 

premise is that by reducing the number of input parameters or state variables (output 

responses), the original problem can be solved more efficiently with reduced cost, i.e. less 

memory requirement or smaller number of floating point operations or code runs and 
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ultimately current analysis methods which are unaffordable due to computational cost can be 

implemented for routine engineering analysis.  

First contribution of this dissertation is to devise the efficient active-subspace 

identification algorithm based on the subspace methodology. We adopted the randomized 

range finder algorithm which mainly proposed and studied by mathematicians in numerical 

linear algebra community to accelerating matrix decomposition methods for low-rank 

approximation and incorporated into the reduced order modeling algorithms. Different with 

mathematicians’ objective for randomized algorithm which is reducing the number of 

floating point operations of decomposition algorithms for given matrix, our primary concern 

is reducing the number of code executions to identify the range of active subspace while the 

explicit form of matrix or model is not given. Because our range finder algorithm is non-

intrusive, there is no necessity for accessing and modifying source codes of legacy simulation 

programs. Thanks to randomness, the process for constructing orthonormal basis can make 

best of the cluster computing platform; thus, reduced order modeling itself can be efficiently 

performed in (semi-) parallel.  

In that the reduced order modeling is an approximate of the original model, there must be 

errors introduced. It is obvious that the error should be quantified and controlled. Three 

methods are considered and examined for that purpose: singular value spectrum of random 

samples, magnitude in-active components and output response change due to in-active 

components. The numerical tests show that all three indicate the similar results while each 

method emphasizes on the specific physical or mathematical meaning.  
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With the randomized range finding algorithm as the main engine, we could achieve the 

dimensionality reduction in two levels: state-level and input-level. State-level reduction is 

algorithmically straightforward and its physical meaning is easy and simple to understand. 

On the other hand, input-level reduction requires mathematical knowledge on subspace 

methodologies and first order derivatives should be provided to extract the sensitive 

components of input parameters. This dissertation put more efforts on the latter, input-level 

reduction, and tried to explain and illustrate the background theory, idea and algorithms 

concisely but in details as much as possible. To demonstrate the applicability, we have shown 

that the reduced order modeling can be successfully combined to other analysis methods: 

- Reduced Order Initial Condition Perturbation Theory (state-level reduction) 

- Reduced Order Hessian Construction (input-level reduction) 

- Reduced Order Regression Analysis (input-level reduction) 

With numerical tests, we could convince that the our hybrid reduced order modeling 

methods can be used to identify the influential components reliably and efficiently. 

Especially, the limit of parameter reduction, i.e. how much reducible, within an error 

tolerance was intensively investigated. The observations conclude that there are two factors 

to determine the reduction: model nonlinearity and magnitude of perturbation. It is obvious 

that if a model is more nonlinear, the larger size of subspace basis would be required due to 

nonlinear terms. As the input parameter perturbation increases, the effect from higher order 

terms becomes significant and cannot be neglected any more; thus, the larger size of 

subspace basis would be required to capture higher order effects. This implies that there is no 
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a priori estimation of error due to reduced order modeling or active subspace size unless the 

model is investigated intrusively. Therefore, our adaptive basis construction approach can be 

rationalized.  

Deliberating the incorporation of the reduced order modeling approach to the uncertainty 

quantification methods, we could come up with the idea of intersection subspace between 

two different active subspaces and could have shown that the further reduction can be 

achieved. Numerical tests were conducted to show that the number of code executions for 

uncertainty propagation be reducible without compromising the accuracy of analysis: 

- Reduced Order Uncertainty Propagation with Linear Assumption 

- Reduced Order Uncertainty Propagation via Nonlinear Surrogate Modeling 

The input parameter perturbations due to uncertainty should be small in nuclear 

engineering, thus one can expect exceeding reduction in real reactor calculations. For very 

highly nonlinear problem which should not the case in nuclear engineering for safety reasons, 

nonlinear surrogate based uncertainty propagation was also examined. It drew an important 

finding that the linear assumption in uncertainty propagation could underestimate the output 

uncertainty, which could be an issue in case that the propagated uncertainty value would be 

used to critical decision making regarding to safety.  

It was natural to consider the problem with multiple subspaces and move onto the multi-

physics problems, which has been a common topic in computational science and engineering 

communities. We could generalize the intersection subspace approach to the coupled codes 
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problems and numerically demonstrated in a problem that two codes are serially coupled but 

through another code, the latter code feedbacks to the former code in chain: 

- Reduced Order Modeling for Multi-Physics Problems 

Compared to uncertainty quantification, in general engineering applications, e.g. design 

optimization, the large variation of input parameters should be considered. We show that the 

feasibility of our reduced order modeling would be still applicable to very large scale 

problems with large variations. Also, we expect that as the more codes are coupled, the more 

reduction could be achieved, which is very promising because not only we can conduct the 

routine engineering calculation more efficiently but also we can deal with more complex 

problems. 

In conclusion, we have proposed the efficient method for reduced order modeling and 

explored the applicability to nuclear reactor physics problems through numerical 

demonstrations. With the randomized algorithm, we make the best of the multi-core 

computing environments to perform the reduced order modeling. By combining the existing 

methods for surrogate modeling, e.g. perturbation theory, response surface modeling, we 

have shown that computationally expensive engineering analysis, e.g. sensitivity analysis or 

uncertainty quantification, can be conducted efficiently.  

Though we were focusing on exercising the reduced order modeling on nuclear 

engineering problems and examining the applicability, the proposed methods and algorithms 

are general so it would be straightforward to extend to other engineering problems. 

Therefore, there are a lot of possiblily for future works in and out of reactor physics 
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applications. First of all, the capability of the reduced order modeling for the assembly 

macroscopic cross-sections can be incorporated to core simulator for fuel loading pattern 

optimization. As mentioned in Chapter 2, the assembly model should be calculated very 

many time to capture the effects of different operating conditions. Core simulator gathers the 

few-group constants and interpolates to generate the input parameters for core-wise 

calculations. Once the surrogate model for few-group constants  is constructed accurately 

with reduced order modeling and incorporate the surrogate to core simulator, repeating the 

assembly models and the interpolation of few-group constants would not be necessary and 

additional approximations could be avoided.  Second, the intersection subspace approach can 

be applied to other coupled code problems, i.e. thermal-hydraulic and neutronics coupling. 

Because both codes are computationally intense, coupling them would require enormous 

computing resources. With aid of the reduced order modeling with intersection subspace 

approach, the computational cost can be effectively managed, e.g. determine the optimum 

mesh size or mesh structure or filter out the dominant physical process and parameters for 

subsequent analysis. In addition, the proposed reduced order modeling method is basically 

non-intrusive approach; thus, it can be easily applicable to any other problems if conducted 

properly. Near term goals include the application to licensing level reactor physics design 

calculations and nuclear power plant accident analysis for probabilistic risk analysis (PRA). 

In addition, the reduced order modeling can be useful for not only accelerating the 

simulations but also enhance the capability on dealing with more complex problems that may 

improve the accuracy of the simulation and broaden the application range. In the sense, we 
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can think of incorporating the proposed reduced order modeling to under-developing codes 

as a built-in model.  
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Appendix A 

 

We wish to show that  
1

k T

ii
x

  is a polynomial of the same form as the thk  term of the 

Taylor series. First, we must introduce some notation. Throughout, we take , n

ix    for 

1,...,i k . Let a b  denote the Schur product (also known as the Hadamard product) of a  

and b  and a b  denote the Kronecker product. Also, denote: 

1 2 k     B  

x x x   X  ( k  times) 

We will adopt a notation common in the analysis community and define a multi-index,  , as 

an n -tuple of natural numbers. For a vector nx , we define multi-index operations as 

follows: 

1 2 n        

1 2

1 2
n

nx x x x
    

1 2! ! ! !n     

1 2

1 2

n

n

D
x x x

 

       
     

       
 

Using this notation, we can express Taylor’s theorem for a single-valued function about a 

point 
0x compactly: 
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 
  0 0

0 !x

D f x x x
f x






                                       (A.1) 

where the k th term of (A.1) is: 

 
  0 0

!k

D f x x x
f x



 


     (A.2) 

The multinomial theorem can also be expressed as follows: 

 1 2

!

!

m

k

m

m
x x x x

 

                             (A.3) 

Note that    1T T

i n ix x  , where 1n
 is a vector of dimension n  where all entries are equal 

to 1. Applying the associative property of scalar multiplication, we can rewrite as follows: 

          
  1

1 2

1

1 1 1

               1 1 k

k
T T T T

i n n n n

i

n n

x x x x   










B X

                          (A.4) 

where X  and B  are 1kn n   matrices that contain every combination of the entries in x  and 

i  such that the total order is n . Note that (A.3) implies that (A.2) is a polynomial with 

terms that are all possible combinations of entries in x  that have total order n  multiplied by 

constants and (A.4) is simply the sum of entries in  B X , thus we see that (A.2) and (A.4) 

are polynomials of the same form.  

  

 

 

 


